
, LLFcopy

LABOATR FR MASSACHUSETTS
LABORATORY FOR 4INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

'

MIT/LCS/TM-403

TIME BOUNDS FOR REAL-TIME
PROCESS CONTROL IN THE

PRESENCE OF TIMING
UNCERTAINTY

Hagit Attiya

Nancy A. Lynch DTTC
oCT3 0 989

July 1989

5.15 TECHNO ()(iY S() UARF. cI..\Mv RIiR)(E. MASSA(FIUSFTTS 021

. , , , , m , - n n nn m m u m ~ m m m m I

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT; SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified ____________________________

12a. SECU)RT7Y C..ASSIFfCATION AUTHORITY 3, DISTRI.BUTION /AVAILABILITY OF REPORT
_____________________________________ Approved for public release; distribution

2b. DECLASSIFCATION! DOWNGRADING SCHEDULE is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

M11 , LCS/rM 0;3 N0014-85-K-0168 and N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 160. OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
MIIT Laboratory for Computer (if applicable) Office of Naval Research/ Department of Navy

Science I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technologyv Square Information System s Program

Cambrid ge, MAl 021329 Arlington, VA 222217

Ba. NAME OF FUNDING / SPONSORING 81Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

DARPA/DOD I
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS IOKUIl-,O.0 Wilson Boulevard PROGRAM IPROJECT TASKWOKUI

Arlington, VA 22217 ELEMENT NO. INO. INO ~ ACCESSION NO

11. TITLE (include Security Classification)

TEiie Bounds for Real-TimeProcess Control in Lhe Presence (if Timinv .flcerta intj,

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 131b. TIME COVERED 14. DATE OF REPO.7T (Year, Month, Day) 15 PAGE COUNT
Technical FROM TO ____ 1989 July 48

16. SUPPLEMENTARY NOTATION

17, COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Distributed systmes, I/0 aultomata, process control, real-
time systems, resource allocation, timed I/O automata,
time bounds

19. ABSTRACT (Continue on revorse if necessary and identify by block number)
A tinting-based variant of the mutual exciusion problem is considered. In this variant. only
an upper-bound, 7n, on the time it takes to release the resource is known. and no explicit
signal Is sent when the resource is released: furthermore. thle only rnechanisin to measure

real time is an inaccurate clock, whose tick intervals take tiluc between two constants.

('I < C2.

WVhen control is centralized it is provedl that

n - C2 (m(n - 1)/ciJ + 1) I

is an exact bound on the worst case response time for any such algorithmi. where n is the
number of contenders for the resource and I is an upper hound onl process step tinle Oil
the other hand. when control is distributed among Processes conne-cted via commuinication
lines with an upper bound. d. for message delivery time, it is proved thiat

n [c2 (L(ni + l)/cij + 1) + d + c2 + '21]

Zba i ION i '!MgLABiIiTY OF ABSTRACi 21 ABSTRACT SECURITY CLASSIFICATION' UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UL~Lc.Las sif 1*.d

22a, NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Cd)I22c OFFICE SYMBOL

Judy Little, Publications Coordinator (617) 253-5894 7

DO FORM 1473, 84 MAR 83 APR editinn may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*.LL Go-ornmt Pr~6' Off I: 1965-aO7-O

Unclassified

19.

is an upper bound. A new tecm liQe ivoi% ing sfhifing and s/h rinking executions is combined

w,thi - careful analysis of the best allocation policy to prove a corresponding lower bound
Of

n ,_'. 2(J, - in - V.d.

These -onliounatorial results shied ,;om light on modeling and verification issues related to
real-tunle systemls.

AcC95-< 0O: Fro!
NT:; A&I

DT1J I-3
luuiianC'fC Od 1

By j'o"Io
r1strf but l /_____-

vall'o2.ity Codes

'Avail and/or

'dt Special

WIP

Time Bounds for Real-Time Process Control
in the Presence of Timing Uncertainty*

Itag_.it Attiva and ,atic A. LyN-tch

La boratorVi fhii Coniput(1r Science
N I IT

Cainhuidge. NIA 02139"

.Jvl)L 10. 19SO

Abstract

A timing-based variant of the nitutual (xclusion problem is considered. In this variant, only
an upper-bound,.+. en the tine it takes to release the resource is known, and no explicit
signal is sent when the resource is released: furthermore, the only mechanism to measure
real time is an inaccurate clock, whose tick intervals take time between two constants.
Cl C 2 .

When control is centralized it is proved that

n c,-(L(7n +)/J + 1)+1

is an exact bound on the worst case response time fo, -uch algorithm, where n is the
number of contenders for the resource and I is an upper unld on process step time. On
the other hand. when control is distributed aniong processes connected via communication
lines with an upper bound, d. for inessagc h-1i(ev line, it is proved that

n [c, ([(m +)/ciJ + 1) + d + c, + 21]

is an tipper bound. A new technique involving .shift iq and shribiking executions is combined
with a careful analysis of tie best allocation policy to prove a corresponding lower bound
of

n -c2 (Mi/e) +-(, d

These combinatorial results shed some light on modeling and ve',icat i sst,os3 ',,ted to
real-time systemns.

Keywords: diSt ',.2y:tci"?, l/k uca, ,a. ,. . ., rol, ical-tiie sy',telns, resource
allocation, timed I/O atitomata, time bounds.

*'his work was s ipported by ONR onitract NOtW It|5-1"-Mi- , I)y NSF cotitract (V'(R-86114.12, and Iy
)A R PA cont racl, N(i0fl I 1-,3- 1-i12).

1 Introduction

Ai lii)()talit aroia of cUlilitel. alpplicalioiis l. rel0lll111 jplocv (lltrol. ill whtich a cornpilter

sVYtelil lilt eracl s wi h ai real- \\orldS vysteili ill order to guarantee certaini desirable real-world
b)ehavior. Ill ui'ti eeztigases. tilie real- world rieq ircnlints i iivol ye li-~iiji properties.

anid so the bhvi or ofth lieonip111ter s 'yst elii is required to satif certain timi ng constran'lts.
In ~ ~ ~ ~ ~ ~~~Iiin ore o1kaH o uii~ cm l ost rainits. the coipurer systemin must satsysm

a~sti l pt iolls abouit timie -for exam plo. its various coin polients should operate at knowvn speeds.

It is, clear that -Cead t heoret ical work in thel ariea of real- t ime systcmns is necessary. Ill
lie past loW yeirs. seVerial researchers havxe proposed new frameworks for specifying requi re--

mients of suicli svst outs. describing iipleunen tat ions. aud proving that tile imp~lementation."
satisfy tile re quireluient s. These framepworks are based onl. among others, finite state in achinles
[D.5). weakest precondition inet hods ([11811). fist ordioti logic (JM\86. .1M8 7]), temporal logic

CB II 11). Pet ii niwIs ([l(RS3. LS87. S 77]'). and prcss, aigeltra ([11GR87.1 IKSRGASS8. ZLG(389]).
\',orl\ is, sill! needed in eval nat ig,, and coinipari n, H ie various nmodlels for their useful ness iii
reasoning a hon, iinport a lit lenil) loii this a lea am pe1)rhlaps ii developing niew niodels if'
hese prove to be iiia(eqiat e.

Work is also needied lin developing- thle coinplexii t theory of' such systemis; very little work
hsso far been donte lil t his area. :\n exampllle of thle kind of work needed is lprovidled by vtlie

theorv of asynch ronlous. concti rreit, svsl eilis, Tl'ua theory contais miany com binatorial results
that show what can and cannot he acconmplisled by' asynchronous s *ystems: for tasks that can
he accomplished. other comibinatorial results determine the inherent costs. Ini addition to their
ndividual importance. t hese results also p~roxvidle a testhed for evaluating m-todeling decisions

and a stinmultus for thle (lovelolpillent of algorith in verification techniques. Similar results should
he possible for real-tinie systemns. Somie exaniples of complexity results that have already
been obtained for real-timtie s 'Nstems are th li any results on clock synchronization, including
[D1{S86. lIMM8.',. 1,78. L L-8 . WL88] (see [S W1,88] for a, surveyv).

Ini this paper. we embark oih a study' of comnplexity results for real-time systems. W~e begin
tils studv by considerino- timiii"--based variatioins of certain problems that have previously been
stliilied inl asv iichroniolis colciirren t svst enis . Ili part icular, in this paper. we study a variant of
tie 111111u fo/ (J11n.,i100 11u(bk(11. "I'i is prolemi is, onet of thle fiiundamn tal 1)robletnis in distribu ted
col pu titug: it serves as" all a bst mct ion of' a large,(class of ho aad ivcoido ncc problems. Weo iote,
that thliis pa rticula r proloil a ppear,, il thle real -iline colnputit'g lit erature (cf. [J M 87]j) as thle
-iii clear react or p rollen C. I here. operatIors pi sli (Iiffierent but toils to requesi the mot ion of

di ffreni control. muds Ini the(saminv iclear reacto01. It is tmndelsirable to have miore than onle
control rod nioxn bill athle arn- tite.)restiniallY Since in that case the nuclear reactionl might

be slowed~ (lrwvl loo iiiiicli.

Mac ~~y' 7 u'v ca::i:.Miionstg of ,,onie niniher. n. of identical inox'ing
parts (e.g.. coijirol r'ods,). 110 tw o~(f' whiclh a in i up Josod to mnove at thle samie t irn. An operator
associated xvit Ii ch Ii iiovi ii(i part canl requnest por~inissioml for thle associated part to illove by
pushimig a buittonl 1,hat sols a I?'.QI 1.5' sig~nal to thle conipuittor systemn. The systemn responds

wIi (? GRANT I qIgials: each (GRANT .\Idn iives prlisi t Ie~ d"Sigiiate(moving par~t to

mlove. hutI such1 motion is. expected to lhe ltilied rno more t han at fixed Time. /it. later. 'File

5 vstk-ii i', o:ii. lv 5p)o' ed t) i~sile ai (GR'tAT igi wlii it i :iow, that it is sate to move ft(e

ially prece ding 1? !<t15 vhutl olmitn lr;i> alreunlv beeiisatlied (by a c'orr'esponingiif

GRJAN".T ina .Our goal is- to Iliiiuu/e IIIe wor-t-case tiiie betweeni a RIKQUiISTi signal

and tilie cor-resp)olidilig(ip.4 GRAIN igT l L".. I lie u'ol'-4-raoM i(s 1)oi.s(t1i114

The cornpluter svst en igh-t consist of, a siwd pigelrocess r111ningi onl a dledicat ed proces-
* son' or, igh-t b~e adist ribLuted "'vstem ni t'inill iu onSepa rate uprocvs~ors commnum rcat i ng over a

iiiess11ageo svstenli .sol virig thle prohica (I def on tv requires thle c'omrpuiter svstem to make ac-
curate estimates of the elapsed time sinice thev last (GRA NT sig-nal: lie difficult v. however, is
hat the cormp uter svsteni onilY has inaccuiirate in formna tion ab~out t ii e as given 1)y iniaccu rate

clock components within the s 'ystemi and~ L)'v estimat es of' the time required for certadni events.
Specifically. thle Only iiiforiat ionl aLut lttlrre Illin i lie corn l1tlter sy'stm1 has is the followi hg.:

1 . thle knowledge t hat1 a rnovintg part wvill stop mrovi ii p withini time to after a (G1RANT sign al.

2. the knowledge that thle t imre betxveen sicues"i ye ticks of a ii v clock is al way\s iii thre initerval

LC1 . C. for known constant sc ri and C- .1where 0 (I < (.2.

thle knowledge that I lie timre Letweerin succcve st e ps of' any process within thle compluter
system is always inl thle i iterval [0. 1j . for a known constant 1. 0 < 1. anrd

.1. (if thle systeni is (listribuiited) tilie knowledge that flie timin to dliver thle oldest message
ili each clhannril is rio greatei t han a ktiowrii conistant (1.0 < d.

Ii the cases we have in mnind, we suppose that I << c1 < c, <<K d << mi but wve state
explicitly any assumptions that we require abouit relative sizes of' thle various constants.

One wvay ili whichI our- problem (Iiife ms fr-om (t(ie nttrid exclusion problemi usually stutdied
inl asyn~chroniols systems is that wke (10 not asstime thit anl explicit signal is coniveyved to tire
comliit er systein when a mnoving part stop~s miovirig: ft(i onlyv information thle system has about

Owe corn 1)1(1loll of the critical activit v is Lased onl its est imia tes ofilt helIapseCd timue. It is fairnv
tvjucal for rea~d-tirrie svsteriis to utset Iiie est i mat is ill order io miake deductions allowi real-
\orld lhhvior. The re(slts of this paper irirhicate moriw of t ie costs t hat1 result frorii using
such '-stiiiilam--

W\e oktarri lie G)llowinig resu ,lt s. First. wev cori-,ider a cent ralized coruiputci' sYSt cii consist-
iing of just a sinle procus> wf:lh a loral clock. For t hat ae.we show tllit

is ;mi c.rt hound onl thIn worst -(-;lse uesPhiuuu ti ino for tlie t iiiiig-based unlittiral exclusion 1)101-
Ivl. Flelpprbolldr.,lt ~so ro I ;III lalvsao a siiiple VIFO (1110.1e algorith1m.

while the niatchiig: lower bound result arises froii explicitly Constructing and "'retiniing" exe-
C(iiions to oltaini a COiitradictioll.

\\'e tlen conslidr ltne distributed case. whili is substanti illy more complicated. For that
case. we obtain very close (but not exat) bounds: an upper bound of

i [2(1 +1)/cJ + I)+, d+ C- - 21]

and a lower bound of

/ • c._,() + (o - 1)d

Assrlnii ug that t he paraneters Ihave the relative sizes described earlier, e.g., that d is niucli
-arger than 1. c1 aid , lie gap bet weer, lhese two bounds is jutt .lightly more tharn a single

message delay time. 'Phe upper bound arises from a simple token-passing algorithm, while
the lower bound proof emiplovs a new technique of nhifting sonie of the events happiing at a
process while carefully retinng other events.

The model that. we use for proving our results is the I/0 automaton model [LT87]. which
has been extended recently to include timing [MMT88]. As noted earlier, many people are
working on the developrient of other models and frameworks for reasoning about real-time
systems. The most popular way of evaluating such frameworks involves their application to the
specification and verification of substantial examples of practical utility. This paper, however.
suggests a complementary Approach. Since a framework for real-time processing should allow
proof of coribinatorial upper and lower bound and impossibility results, in addition to allowing
specification and verifcation of systems, careful proofs of combinatorial results such as those
in this paper should teach us a good deal about the appropriateness of a m'del for real-time
processing.

The rest of this paper is organized as follows. Section 2 presents the timed I/0 automaton
model. Section 3 contains the general statement of the problem to be solved. Section 4 contains
our results for the centralized case, Section 5 contains our results for the distributed case, and
Section 6 contains some discussion and open probleris.

2 Model and Definitions

2.1 I/O Automata

An /10 autoinalon consists of t he followiig cornponents: a set, of actions, classified as output,
inptt arid introol a sot of ,,tat s. including a dist inguislied subset called the start states, a
sot of (statc, action, statc) Iriples called stcps, aind a partition of the locally controllcd (output

and iiternal) actions i into eqI ivalecie dasses. Aii action ,- is said to be enabled in a state
s' provided that there is a step of the forni (.. .s). An automaton is required to be Input

-1

enabled, which means th t evcrv input action must be enabled in every state. The partition
groups actions together that are to be thought of as under the control of the same underlying
process.

Concurrent systems are modeled by compositions of I/O automata, as defined in [LT87]. In
order to be composed, automata must be st'ongly compatible; this means that no action can be
an output of more than one component, that internal actions of one component are not shared
by any other component, and that no action is shared by infinitely many components. The
result of such a composition ; , antother I/0 automaton. The hiding operator can be applied to
reciassify output actions as internal actions.

We refer the reader to [LT8] for a complete presentation of the model and its properties.

2.2 Timed Automata

We augment the I/O auto!,Iaton model as in [MMT88] to allow discussion of timing properties.
Namely, a timed I/O automaton is an I/O automaton with an additional component called
a boundmap. The boundmap associates a closed subinterval of [0, oc] with each class in the
automaton's partition; to avoid certain boundary cases we assume that the lower bound of each
interval is not o and the upper bound is nonzero. This iiterval represents the range of possible
differences between successive times at which the given class gets a chance to perform an action.
We sometimes use the notation be(C) to denote the lower bound assigned by boundmap b to
class C, and b,,(C') for the corresponding upper bound.

A timed sequence is a sequence of alternating states and (action,time) pairs:

so, (7r, ti), 1, (7r2. t 2)...

Define to = 0. The times are required to be nondecreasing, i.e., for any i > 1 for which t,
is defined, tj >_ ti- 1 , and if the sequence is infinite then the times are also required to be
unbounded. For any finite timed sequence a define td(0) to be the time of the last event in
a, if a is nonempty, or 0, if a is empty; for an infinite timed sequence a, tnd(a) = oo.

A timed sequence is said to be a timed execution of a timed automaton A with boundmap
b provided that when the time components are removed, the resulting sequence is an execution
of the I/O automaton underlying A, and it, satisfies the following conditions for each class C
of the partition of . and every i:

1. Suppose b(C) < -). If some action in (is enabled in .sj and one of the following holds:
either i = 0 or no action in C' is enabled in si- or -, is in C, then there exists j > i
with tj < tj + b,(C) such that either ,r, is in C' or no actiol of C is enabled in s 3 .

2. If some action in C is enabled in si and eithei i = 0 or no action in C is enabled in .
or , is in tlen there, does not exist j > i with t j < t, + 1,:(') and 7r) in C.

The first condition says that, starting fron when an action in C occurs or first becomes

enabled, within time b,,(C) either some action in C' occurs or there is a point at which no such
action is enabled. The second condition says that. again starting from when an action in C
occurs or first becomes enabled, no action in C can occur before time bj(C) has elapsed. The
third condition merely requires that the steps taken by the automaton are indeed legal.

Note that the definition of a timed execution includes a liveness condition (in 1.) in addition
to safety conditions (in both 1. and 2.). For finite timed sequences, it is sometimes interesting
to consider only the safety properties. Thus, we define a weaker notion, as follows. A finite
timed sequence is said to be a timed semi-(xcrution provided that when tile time components
are removed, the resulting sequence is an execution of the I/O automaton underlying A, and
it satisfies the following conditions, for every class C and i.

1. Suppose b,(C) < rx. If some action in C' is enabled in si and one of the following
holds: either i = 0 or no action in C is enabled in si-I or 7ri is in C, then either
tend(o) <_ t, + b,(C') or there exists j > i with tj < ti + bu(C) such that either ir1 is in C
or no action of C is enabled in si.

2. Condition 2. above.

Intuitively, timed semi-execmtions represent sequences in which the safety conditions de-
scribed by the boundinap are not violated. h'e following lemmas say that such a sequence can
be extended to a timed execution in which the liveness conditions described by the boundmap
are also satisfied.

Lemma 2.1 If a is a timed seini-ex(cution (of a titied automaton A and no locally controlled
action of A is enabled in the final stat, of a, then o is a timed execution of A.

Proof: Straightforward. U

Lemma 2.2 Let {aj} = be a sequence of timed semi-executions of a timed automaton A such
that

1. for any i 2! 1. o, is a prefix of ai+, and

2. tim, " tc'14(o0)= "_

Then there (xist, ain infinitt tim(d (x'rtition cr of A such that for any i > 1, ai is a prefix of

Proof: Straigltforward.

6

Lemma 2.3 LOt A be a timed a(itoinatoi haiiig Jiniitcl many rlass. in its partition, and let

(1 be a timed stmi-e.xecution of .-1. Th,, lh(r is a tinnd ('iculion v' of A that cxt(nds o.
.1(1Ch that only fccots from cla.,,(-. ?cith .in it(ipl r buwid occur in 0' Waft 1r 0.

Proof: First, for each class C' and each finite tined semi-execution 3, we define a time

dcadline(.,3.0) to represent the latest time after the end of 3 by which an action of C must
occur in order to satisfy the liveness requirements. Fite definition is by induction on the it umber

of events in 3. In the base case 31 consists of a single start state !0, and we define, for any
class C such that some action in C is enabled in .st, dcadlin((O.C) = b,(C). Otherwise. let
deadline(JC) = v. Let

3 = -o, (r 1 l)sl ..t..-. Itij),s

and assume we have defined deadline for all finite timed semi-executions with j - 1 events.

Denote

31' = SO. (7r I, tl), S1 ... 7rj- I,tj-l I),sj- I

Let irj E C: then dc'idline(3,C') = 1, + b,,((') if sonie action in C is enabled in s,. and

deadline(,3,C) =)c,, otherwise. For any class D € C, d(adlin((), D) = tj + b (D) if some

action in D is enabled in .M, and no action in D is enabled in .s if some action in D is enabled
in s and also some action in D is enabled in s)-j, then dcadline(3, D) = dcadline(3', D): if
no action in D is enabled in q], then d(adline(3, D) = x.l

We construct a' as the limit of a sequence {aj}i= 1 of timed semi-executions, where 01 = a.

Starting from a, we define ai+i as follows. Let C be a class that has an action enabled in
the final state of ai, for which the value of deadline(ai, C) is minimum among all such classes.

Then ai+l is obtained from ai by appending a sir le enabled action from C, occurring at time
dcadline(ai,C). If there is no such class, then we define ai+1 = ai. Clearly, ai is a timed
semi-execution.

It remains to verify that a'. the limit of the oi, is a timed execution. There are three cases.

1. o' is a finite sequence. Then c' = ai for some i such that no action in any class is enabled

in the final state of ni. Then Lemma 2.1 implies that a' is a timed execution.

2. o' is an infinite execution in which the time component is unbounded. Then Lemma 2.2

implies that a' is a timed execution.

3. o' is an infinite execution in which the time component is bounded. The facts that there

are only finitely many classes and the values of b,,(C') are nonzero imply that there is

some bound r, > 0 such that 1,nd((ii+l) > t,,I(ni) + c for all i. This implies that this

case cannot occur.

'These rules are similar to the rules given for maintaining (he variable Ltimc((') in the timc(A) definition
in the following subsection.

! I II I7

Fraiiv I itijed oxecli oll (I- seiii-emecit loll (l wve (lefille .schuld(o) to he thle eqiieii(e of
l a Ill 1 11111" iii'' I hu> rill, ill i Ic.. o1 with I ho tae remiovedl. \%(e,; sav that a sequent e o~f

in' 01j.1lllti pir, is ai Il//u ."chedali of AI if it I., .'e/r(din) where, n is a liiicd execuitionl of
.L \\e aiso define(1)li ht) to he tile subheqlel'ce of .sc/u-d(o conisisting of externial (iput and
WIT 1)111 aClioil> anld as.,ociatetl tniie. anld sa v t hat a seq nence of (act ion time) pai rs is a tirna(d
bt /ior of' A if' it i.s bf li(i). where ok is ait Iijued executionl of .4..

IDefiiuIt ins for comlposiiig 1 iuied aii teiata to yield aimot her tifl(d automlatoni. analogous 10
Illo~e for 1/0 ant onia '. are dlevelopel inl) .tIm wSj.\e inloiel r('al- tione s'yst ells aws coilposi-
ions of' tinted a ut oniat a (Real-ti me s c>were also modeled inl tiais way in ll~

2.3 Adding Time Information to the States

xx ci hi like to ili s ta ii (arl p roof tech niquies such as ivariant assert ons to reason about
timed au tomnata . Ini order to do t li. we fi iur it con venient to define an ordinar ' v 1/0 ant omatoli
tir(A>) corresplnId ing to a giveni timed a utoiatoni .4. This new ant oinatoii hias the timing

restict ions of .4 built itt its state, Ii the form of predict ions about when t be next evenlt
ill each clas will occur. Thus, giveni allv timeod 1/I) automaton .4 having bouindmnap b. the
ordinaryj I/0 a ntomiat on ti to i' is defi ned as,, follows.

The autoniatc:i timf(A) has actiolis of' the fo;-m (ir.t). where -, is anl action of A and t
is a lion llegat i e r-eal ii im her. Eachi of its states consists of a st ate of .4, auigmnented with at

tume called Ctill?(ii d. for each (lass C of the pa rti tion. Iwo t imes, Ft ino#-(C) and Lt imi(C).
(71 ot (Ilhe "cuirreiit t iio") represents the time of t he last preceding event. initially 0. Trite
Ft im ((C() auid Ifti ((C() conipouent s relpresciit . respectivelY, the fi 1st, and last ti nies at which
a ii actioni ill class C is schlid ii le to be performed (amsun ii some act ion in C staYs eniabled).

(ouse record not ationi to(leilote tlie various comiIoitents oft the state of f m(.4): for instaince,
.. S(U (le:otes thle state of A in cluided inl st ate ,s of h me(.1).) More p~recisely, each init ia-l

state of lion (A) consists of all initial state s of A. lus Clime = 0, plus values of Ftimr(C)
anld Lti o(C) withI the following p~roperties. If there is anl act ioni in C enabled in .. t hen
Ft i (C) =b,,((') and LI init(C) =b1,(C). Othierwise, Fiime(C) =0 all(l Ltime(C) 'N-.

If (,r. I) isan action of I1irCA). then (.s'. (7,-.)..s) is astep of timi(A exactly if tie followinig
cond~ition,, hold.

I. ('..Ist'i(. Isle')is a stop of' A.

3. If'~ i a lcclly.% coiitrollod act ioli of .I Illhis thieli

h 1 f p m > e aclotIo l i C is euabh,d illa, then .h.lImI ((C) 4- b,(() and
., llt , - I - b ((). and

it f I action ia (,1' , liahh'd it .. I. u ., ,. then .l1ti,11 ((and s. L i 1 ((') = .

;t I , '.1 tim ,(1),

1) if soreo action r, [) is (11al),d in .A .qI aI and soie action in D is ,11a)1,1d ill
..A1.,/ a then .. /Ftim, (I)) = .'.lIIi (!)) a1d.;.LIio(D) = J.ltin (.1)).

c If some action it D is enabled ill /- -./.l(l d Ito actloll il i) is enabled il l
1--n .,.itiilm((I)) = I +- b1(1)) an idLtin(([) = + b,,(D). and

(I. i f it, acl ion i I) is tilabled in .. A..,I(It(. thell .,.,'I im ' 1)) = 0 and ,,l Llim (1)) - .

N 1it 1 roer t ., I) ensi res that an a., ion ldoes iot occur if any other class has a l act iont
Lat ,n ibe c heduleul first. The partition classes of ti mc(A) are derived one-for-one from the

c1as:,es of A (although we will not need Iliei in this paper).

The finite executions of !imc(A). when the states are projected onto their Astote compo-
nentls, are exactly ilhe sane as the ffitit(]Vofixes of the timed executions of A. This implies

that safety properties of a timed auloniaton A can be prov,(d by proving them for imc(.1).
e.o_.. g ising i1 ariant assertions.

3 Problem Statement

I-or either the cenralzed or distributed case, we assume that there are n mdules called moving
parts. n modules called opermto,. plus some modules comprising the computer system. The
actions of the complete system. exclusive of anY internal actions of the computer system. are
REQ FEST(i). GRANT(i) and FINISlt(i), for 0 < i <- 1. Each operator(i) has input actioi
(;RANT(i) and output action REQUEST(i). Each movingpart(i) has input action GRANT(i)
and output aclion FLINSU(i). The compuhr sqsten has input actions REQ UEST(i) for all I
aid outpu, actions GRANT(i) for all i. See Figure 1.

Let rnorinqport(i) be a particular tinied automaton with the given signature, having a
stale consisting of o(component. GRANTEI). a Boolean variable, initially false.

(;IRANT(,)
Effect:

CRANAI I;D:=lr

FINIS (i)
lArecr l it ion:

C; tA: Nit); =I tr~u

n 0 r i te r

+ , REQUEST(i)

GRANTHi)

FINISH(i)

Figure 1: The system architecture.

Effect:
GRANTED := false

There is only one class in the partition for movingpart(i), a singleton containing the one
action FINISH(i). The boundmap associates the interval [0, m] with this class. As described in
the Introduction. the timed executions of this timed automaton have the property that, within
time m af .r a GRANT(i) occurs, a FINISH(i) must also occur - that is, movingpart(i) 'stops
moving".

Now consie, ,erator(z). It is described as an automaton with the maximum amount
of freedom w - to allow to the operator. Let operator(i) be the timed automaton with
the appropriaoe si ,ature, having a state consisting of one component, PUSHED, a Boolean
Nariable, initially.

GRANT(i)
Effect:

PUSHED := faise

REQUEST(i)
Precondition:

PUSHED = false

10

Effect :
PUSHIED := truo

Again, there is only one (singleton) class in the partition for opcrator(i). We do not want to
insist that the operator push the button within a particular amount of time after a GRANT.
(It may never do so, in fact.) Thus, we define the boundmap to assign the interval [0, oc] to
this one class.

The requirement for the computer system is that when i4 is composed with the given
operators and moving parts, the resulting systein has all its behaviors satisfying the following
conditions:

1. Request well-formedness: For any 0 < i < 71 - 1, REQUEST(i) and GRANT(i) actions
alternate, starting with a REQUEST(i).

2. Moving part weli-forwedness: For any 0 < i < n - 1. GRANT(i) and FLNISH(i) actions
alternate, starting with GRANT(i).

3. Mutual exclusion: There are never two consecutive GRANT events without an interven-
ing FINISH event.

4. Eventual granting: Any REQUEST(i) event has a following GRANT(i) event.

We measure the performance of the system by the worst case response time, i.e., the longest
time between REQUEST(i) and the next subsequent GRANT(i) in any timed behavior.

4 A Centralized System

We first consider the case of a "centralized" computer system to solve this exclusion problem.
In this case, the architecture is as follows. There are two modules (timed I/O automata), the
manager and the clock. The clock has only one action, the output TICK, which is always
enabled, and has no effect on the clock's state. It can be described as the particular one-state
automaton with the following steps.

TICK
Precondition:

true

Effect:
none

11

REQUEST(L))L manager TC
GRANT(i)

Figure 2: The architecture of the centralized control system.

The boundmap associates the interval [cI, c2] with the single class of the partition. This means
that successive TICK events will occur with intervening times in the given interval.

The manager has input actions TICK and REQUEST(i) for all i, and output actions
GRANT(i). It is an arbitrary automaton, subject to Lhe restriction that it has only a single
class in its partition. (This says that it is really a sequential process - it cannot be running
several processes in parallel.) We associate the boundmap [0, 1] with the single class of locally
controlled actions. This means that successive locally-controlled steps of the manager are done
within the given intervals (if there are any enabled).

The computer system is the composition of the manager and the clock, (with the I/O
automaton hiding operator applied to hide the TICK actions). See Figure 2.

Note that the timed automaton model forces us to model the step time of the manager
process explicitly. Other models (e.g., the one used for clock synchronization in [WL88]) might
avoid this level of detail by hypothesizing that the manager's steps are triggered only by input
events such as clock ticks or requests. We regard such a model (informally) as a limiting case
of our model, as the upper bound on manager step time approaches zero.

4.1 Upper Bound

4.1.1 The Algorithm

The following simple algorithm for the manager process solves the problem. The manager
simply puts requests on a FIFO queue. If there is a pending request, the manager issues a
GRAIVT signal to the node whose request is first on the queue, and sets a timer to measure
the time until the moving part stops moving. When the timer goes off, the manager repeats.

There is some subtlety in determining the minimum number of clock ticks that guarantee
that time m has elapsed since the GRANT. At first glance, one might be tempted to count
Lm/cdj + 1 ticks, but a careful examination shows that this might cause a violation of the

12

exclusion property, if a TICK happens inniediately after the GRANT, and the next GRANT
happens immediatelv after the last TICK. Waiting for L?)/cij + 2 suffices to overcome this
difficulty. but tie lower bound presented in Subsection 4.2 suggests that this might not be
optimal. In order to achieve the best po-silble timing performance, the algorithm only grants
immediately after a clock tick. and the timer is set to [(m + l)/c1 J + I clock ticks.

In addition to the REQUEST and TI('K inputs and GRANT outputs already specified,
the manager has an internal action ELSE. This action is enabled exactly when no output
action is enabled: this has the effect of ensuring that locally controlled steps of the manager
occur at (approximately) regular intervals, as determined by the manager's boundmap.

The manager's state is divided into components:

TICKED holding a boolean value, initially true;
QUEUE holding a queue of indices i E [0..- - 11, initially empty;
TIMER holding an integer, initially 0;

The manager's algorithm is as follows:

REQUEST(i). 0 < i < n - 1
Effect:

add i to QUEUE

TICK
Effect:

TIMER := TIMER -I
TICKED := true

GRANT(i), 0 < i < n - I
Prec-ndition:

i is first on QUEUE

TIMER < 0
TICKED = true

Effect:
remove i from front of QUEUE
TIMER := [(m + l)/clj + I
TICKED := false

ELSE
P recondition:

QUEUE is empty or TIMER > 0 or TICKED false
Effect:

TICKED := false

13

4.1.2 Correctness Proof

Let A be the composition of the four given kinds of tinied automata - operators, moving parts.
manager and clock. This sulbsectioli is devoted to proving the following theorem.

Theorem 4.1 ;llyorithin A is, aI corrcct c(ntralizf(l resource allocalion algorithmn.

WVe pr1ove correctness using automaton timc (A.). as defined above. In this case. the svstent
state is augnmete1 with the variable (finn . plus the variables Ftimc and Ltimc . for the
following partition classes:

1. REQ UEST(i) for- each i. which contain-, the single action REQUEST(i).

2. FIXISII() for each i'. which contains the single action FINISH(i).

:3. T!IK. which contains the single action TICK. and

.1. LOCA F. the locally controlled actions, which contains all the actions GRAVT(i). 0 <
K n - 1 and the ELSE actionl.

Initially, we have Ftlmr(REQUESF(i)= 0. Litie(.REQUTEST(i)) = o. Ftirne(FIISII(i))
0 and Ltime(FIXISII(i)) = x., Ftime(TICK) =c1. Ltiie(TICK) = c2. Ftime(LOCAL) =0
and Ltinmc(LOCAL) =1.

The proof of mutual exclusion rests oii the following invariant for lime(A).

Lemma 4.2 Leil be a rcachable state of tiinc(A). Then the following all hold:

1. If I'INISII(i) is enablcd in s.Asta Ic, then

(a;/ s.-TIEI > 0,

(bi/ s.Ftirne(TICK) + (.s. TIMER - I)(- > ,;.Ltirme(INIYII(i)). and

(c) FIXISII(j) is not enabled in s.Astat(, for any J $ i.

2. If s TICKED thei .s.Ftiie(TICK)> sLtlinc(LOCAL) + C - 1.

Thus, if a p~art is moving. thle maniager's TIMER is positive. Moreover, the TIMER is large
enough so that waiting that number o f ticks wvoul1(cause enough time to elapse so that the
part would be guaranteed to have stopped moving. Property 1(c) implies mutual exclusion.
while property 2 guarantees a lower bound oil the time till the next TICK, if no LOCAL step
has occurred since 1he previous TICK.

Thl proof of correctiness is dune in ca refuil (leta I since it, is quite straight forward, we include
it in Appondix A. 1.

Proof: (of Theorem 4.1) Lemma -1.2 implies mutual exclusion. ,Moving part well- forinedness
follows easily from the same lemma and the definition of the moving part. Hlequest well-
formedness follows from the definitions of thl, operators and the manager. The remaining
condition, eventual granting. can be argued from the queue-like behavior of the manager and
the fact that the clock keeps tickitig. (Tis latter property also follows from the formal proof
of the upper bound on response til ne in lI following .subsection.) U

4.1.3 Response Time

Now we prove our upper bound on response time for the given algorithm A.

Theorem 4.3 Assumc that I < c1 . Th worst case respons. time for algorithm A is at most

n c2 ([(i + l)/cmj + 1)] + 1.

The proof of this theorem requires several lemmas.

Lemma 4.4 In any reachable state there ari at most n entries in QUEUE.

Proof: We have already argued that all timed executions of the system are request well-
formed, i.e., REQUEST(i) and GRANT(i) alternate for any 0 < i < n - 1. starting with
REQUEST(i). The preconditions for REQUEST(i) and the operation of the manager imply
that when REQ UEST(i) happens, is not in the queue. A simple induction implies that in
any reachable state of the system, i appears only once in QUEUE. U

Lemma 4.5 In any reachable state s, s. TIMER < L(+ l)/ci + 1.

Proof: By an easy induction. U

Lemma 4.6 Let s be any state occurring in a timed execution, in which s. TIMER < k, for
k > 1. Then (at least) one of the following two conditions holds.

1. s. TIMER < 0 and s. TICKED = true, or

2. the time from the given occurrence of .s until a later TICK event resulting in TIAIER < 0
is bounded above by C2 • k.

Proof: Suppose that it is not the case that s.IIMETR < 0 and .,.TICKED = true. Then a
GRANT cannot occur until a state is reached in which TIM E11 < 0 and TICKED = true,
and this condition requires at least on TICh to occur after the given occurrence of s. The
bound follows from the upper hoind on clock time. the way the TiIC actions manipulate the
TIMIER, and the way the variabVo TICIKE) gets set. m

15

Proof: tof Iheore I 1.3) \Vhel a req.quest ;1171\k. it Is at Xvewrst ill position 11 on the QUEUE.
by velnilla .L. 1 3y I enilas 1.5 ald 1(i. eit I ,ir lINIt 1 < 0 and TII('NED -= tru at the time
when the request a 0ives, oi eke wi lhin time u ,(L) +)/] 1) a TICK event (call it ir,)
oCCre irs V ich sets TITER to 0. Il the former (ise. thero must be a TICK event occurring
prior to The reqmst that sth TINIt"I < 0. Xvilh io Intervening local events; let, 7r1 denote this
TI('K event. In elher case. wi tim I tie I alter 71 (but after the request) the first entry gets
itl requoet gralled atid g(,ts removed froli the QV](" LU. and TINIEI is set to

li +. I/l + 1

Since I < c. withint time c, after . anot her ICIK event ;! occurs, this one decreasirng
TINIER to ('L In I)/ctj).

Inmediately after .,:. either fIMER = 0, or L(il +)/clj > 1; in this latter case, by Lemma
4.6. within at most time c2 (7 o0 + I)/clJ) after ;l. a TICK event occurs that sets TIMER < 0.
Thus. in either case. from event ,r1 until another TICK event 1r.2 that sets TIMER < 0. at
mlost

q. (L(' -+)/c 1 j + I)

time elapses. The next entry ill the queue is en;ibled immediately after 7r2 . In this manner. we
call construct a sequence of TICK events, 7 1 . "ra, such that the time between rri and 7ri+,
for each i. 1 < i < it. is at most

c2 (L(ll + I)/cij + 1).

and for any t i < it. the I'th entry on the original queue (if there is any) is enabled after 7ri.

Hence. within time

n, [C2 ([(m? + I)/cIj + I)].

the enabling condition is satisfied for the given request. Then within time at most I afterwards.
the request is granted. This completes the proof of the upper bound on response time. N

Note that thik proof requires the assumption that / < cl: in case this assumption is not
itad . an aitalysis si lilar to t h, one in the proof above yields a slightly higher uipper bound of

1r L + I)/1 J - 1) + 1]

A.so. lote that the limit of lhe giveij ipper hound. as / approaches 0. is ,1 'C 2 (,It/c,3 + 1).
We" think of this ;I. an t|pior hound for this algorillin when it is ru oil an interrupt-driven
model.

16

It follows from the lower bound in Section 4.2 that algorithm A has optimal response time.
This seems to imply that the best policy is to issue a GRANT right after a TICK. This is
apparently because a time estimate done immediately after a clock TICK is the most accurate.

Although this proof is currently written in terms of executions, it seems that the invari-
ant assertion techniques for time-augmented automata developed above could be extended to
handle response time analysis: preliminary results in that direction appear in [LA].

4.2 Lower Bound

Now we turn to proving low(r bounds. WV;e begin with a fairly simple lower bound result that is
quite close to the upper bound proved in the plreceding hubSection. but does not match exactly.
The gap between this lower bound and the upper bound depends oil the manager's step time
and the roundoffs. Since we consider these to be very small, for practical purposes one might
be satisfied with this simpler lower bound. However, it is interesting theoretically to note that
in this case., we can obtain a tight bound by a related but somewhat more difficult argument.

Theorem 4.7 The worst case response time of any centralized resource allocation algorithm
is at least

n . n(c 2 /ci).

In order to see why this is so. define a timed execution or timed semi-execution to be slow
if the times between successive TICK events (and the time of the first TICK event) are exactly
c-2. We have:

Lemma 4.8 Let a be a slow timed execution of a correct centralized resource allocation al-
gorithm. Then the time between any two con.secutive? GRANT events in a is strictly greater
than

M(c 2 /cl).

Proof: If this were not so, then we could "retime" the whole timed execution by multiplying
the time at which each event occurs by cl/c 2 (without changing the ordering of events), re-
sulting in a new timed execution in which the time between the two GRANT events is at most
in. The time between clock ticks is now cl, so the resulting sequence is a timed execution.
Then moving the FINISH event corresponding to the first GRANT event to the point just
after the second GRANT event (to occur at same time) yields another timed execution. this
one violating mutual exclusion. a

Proof: (of Theorem 4.7) Ve create a slow timed semi-execution in which a REQUEST(O)
event occurs. and immediately after the corresponding GIIANT(O) event (and at Ihe samne
litte) a sequence of

17

REQf7EST(O) . REQ UEST(n - I)

ovents occur. .Now extend this timed semi-execution (keeping it slow) until ali these requests

are fulfilled. By Lemma -4.8 the time between any two of these GRANT events is at least

m(C 2/" 1).

Let GRANT(j) be the last GRANT. The time from REQUEST(j) until the corresponding
GRANT(j) is at least

, ,m(r.,/c1).

iti

Now we present the more delicate arguments necded to prove a lower bound that matches
the upper bound given in Section 4.i. Note that the only differences between the lower bound
to be proved and the one already proved in Theorem 41.7 are the presence of the I terms
describing bounds on the manager's step time and the careful treatment of roundoff. Still, it is
interesting that the bound can be improved in these ways to match the upper bound exactly.

Theorem 4.9 Assume that I < cl.2 Then thMe worst case response time of any centralized
resout e allocation algorithm is at least

,,[C2 ((,m1 +)/cIJ + 1)] + I.

An I/O automaton is called active if in every state there is a locally-controlled action
enabled. (Recall, for example, that the manager in the algorithm of the preceding subsection
was made active by the inclusion of the ELSE action.) Before proceeding with the proof of
the theorem, it is useful to prove the following lemma, which claims that there is no loss
of generality in assuming that the manager is active. As in the previous subsection, denote
by LOCAL the class of all the actions that are locally controlled by the manager (including
GRANT(i), for all i).

Lemma 4.10 Suppose that .t is a centralizcl rcsoirce allocation algorithm with response time
< b. for a r~al number b. Then there is another such algorithm A', with response time < b. in
which the managfr is ar/in'.

2Notice that a noti-strict inequality is used in this assumption, whereas a corresponding assumption for

Theorem 4.3 uses a strict inequality. This reflects the difference in the kinds of reasoning needed for lower and
upper bound results.

, i a I I

Proof: Given A, we prod',we A' by adding a nev, internal action NULL to the manager.
The sttps associated with this action are exactly these triples of tle form (s',NULL,.s), where

s ,nd no other locally controlled action of tie nanager is enabled in s'. Clearly, the
manager is active in .T. We claim that .' solves the problem and has response time < b. In
order to see this, is suffices to show that every tinted beliavior of .4' is also a timed behavior
of A.

So let

0' - 5 0 1(rt),. ... 1 1i i .

be any timed execution of A'. Construct o. a new timed sequence, by removing all NULL
steps from a. Assume

(= S0 ,(7r1 ,tI), 1. ,- 1S(,1i8i),sI. i .

and let II be the mapping from the indices of events in a to the indices of the corresponding
events in a', and set 11(0) = 0. Note that, for i > 1. if j = f1(i), then s' = si, t' = ti, and
7" = 'r . We claim that a is ; timed execution of A. Then it follows that every timed behavior
of A' is a timed behavior of .4.

All we have to show is that a satisfies the boundmap of A. The only interesting case is the
class LOCAL. and since the lower bound for this class is 0, we have to check only the upper
bound, 1.

Fix some i such that in si some locally controlled action of the manager is enabled, and
either i = 0 or no locally controlled action of the manager is enabled in si- 1 , or 7ri is a locally
controlled action of the manager. We must show that within time 1 after ti either a locally
controlled action of the manager occurs, or there is a state in which no such action is enabled.
Let j = 11(i). It must be that some locally controlled action of the manager is enabled in
' since some such action is enabled in all states of the manager in A'. We first show that

a locally controlled event r of the manager must occur in a' within at most I time after t',

There are two cases:

Case 1: i = 0 or -ri is a locally controlled action of the manager in A.

If i = 0, then it must be that j 0. If rri is a locally controlled action of the manager in A,
then it must be that rj = -ri. In either case, as the manager in A' is active, a locally controlled
event r of the manager must occur in a' within time at most I after t.', by the fact that a' is
a timed execution of A' and satisfies the boundniap.

Case 2: i > 1 and no locally controlled action of the manager is enabled in si-1.

Then 1ri _ LOCAL, and hence rr' LOCAL. Let k be the largest index of a locally
controlled event in rj' that has an index < j (0 if there is no such event). The fact that the
class LOCAL is always enabled in n' implies that within time I from I' a locally controlled

1 9

event of the manager must occur in '. By the way k was selected this event must happen
after >so the fact that t, t' implies that a locally controlled event r of the manager must
occur in o' within time at most I after 1',J

In both cases, if - .\ NI.LL. then -r, with the same time, appears in A. which suffices. If
NU = .\LL, then the defii ition of A' imphlies that in the state just prior to r in a', no non-null

local lv controlled action of the nianager A is enabled. Then no locally controlled action of the
manager is enabled in the corre.sponding state in rr. which suftices. U

Now we return to the task of pr'oving 'Theorem 4.9. Ile proof will proceed by iterative
construction of a partiiuar slow timed executiou . A major step in the construction is forcing

GAI.-XT event to happen only in certain sit uations, as specified an(d proved in the following
technical lemma.

If i in an index with I0 i < n - 1. we say that i is unfulflled in a timed seni-execution (t if
the number of REQUEST, vewts in a is strictly greater than the number of GRANTi events
in o. We say that a timed execution or timed semi-execution a is heavily loaded starting fr'om
timln t if for all tines t _ t < t,, ,.(,). all indices are infulfilled in the prefix of a consisting of
all the events occurring up to and including time '. Ve say that an action is an ELSE action
if it is a locally controlled action of the manager other than a GRANT: ELSE events and steps
are defined similarilv.

Lemma 4.11 Let A be a a 'trahzcd rcsomicc allocation algorithmn with an active manager,
a(1 let n b(a .low limed s mi-exccation of A. Assume that there are, unfnlfilled indices in
a. and LO('A L and iCK f iY nis orur in , at time-' t,(a). Then there exists a slow timed
Sf 01i-ciccntiOn 3 (xtC iding o. mich that Jtbr some i. 0 K i K 11 - 1.

schd(.3) = ,schcd(or) (GRANT(i).t) (REQUEST(i),t) (FINISH(i),t),

ulhere t = t,,a,r). LOCAL and TWI ecnts occur in oar at timc t, and there are no
REQUEST or GRANT crt.s in o.

Notice that if o is a heanvily loaded starting from time t then /) is also heavily loaded starting
from time t.

Proof: Assume by vay of cont radiction that there does not a exist a timed serni-execution
with the desired properties. \Ve will extend n, to an infinite timed execution in which no
(;RANT events occur. As thero are unfulfilled indices in n this contradicts the er ntual
granting property.

This is done by col'ti ru1 (1. inlductive'ly slart'ng fromi j 0. successive slow timed se'mi-
executions, on., .each ex t,'hding the previous on. such that for every j:

l. There are no R", Q'.T or GilANT events in (TJ.

20

2. LOCAL and TICK events occur ini or, at time t ,,(na,).

3. If j > 0 then tnd(O'o'j) >_ t,,Aaooj-) + Q2.

We start with rTo being the empty sequence. (iearly. 1. and 3. hold, and the assumptions of
tlhe lemma imply that 2. holds. Now. as.,ume we have constructed aT. and let sj be the system
state resulting after oa3 . There are two cases:

Case I: There is an execution fragment of the manager alone, a'. starting from state s,. which
consists of a sequence of zero or more E"LSE events lolowed by some GRANT(i) event.

Then let .. be any timed semi-execution that extends aaoj such that

,,chezd(/3) = sched(a a3 a') (REQUES'I'(i),t, oaj)) (FINISH(i), td(aa)),

where the events of a' are all timed to occur exactly at time ted(aaj). Then 3 has the
properties required by the lemma: it ends with GRANT(i). REQUEST(i) and FINISII(i)
events, LOCAL and TICK events occur in .1 at time lfd(naJ) = tend(3), and there are no
REQUEST or GRANT events in the prefix of aja' preceding the final GRANT(i) event. This
is a contradiction to the assaned nonexistence of such a timed semi-execution.

Case 2: There is no such execution fragment.

In this case, we can extend aaj by allowing ELSE events to occur. at arbitrary allowable
times, ending with an ELSE event and a TICK event, (occurr;ng in that order) at time
tend(aaj) + C2. This is possible since the algorithm is active. Let oaoj+l be an execution
extending aaj such that

sched(oaaj+) = schcd(aojb) (r, t,,(aa.) + c 2) (TICKt nd(aO'j) + c2) •

where all events (if any) of 6 are ELSE events, and 7r is an ELSE event.

From the way aj+l was constructed, it follows that na.,+, is slow, and that it has the
following properties:

1. There are no REQUEST or GRANT events in aj+i.

2. LOCAL and TICK events occur in a+, at time tI,nd(o'aj+i).

3. t4d(aaj+t) ! te,(O(Ta) + C2.

This completes the construction of the timed semi-executions oa.j,0 < j < 00.

Now Lemma 2.2 implies that there exists an infinite timed execution oa extending all
the oa3 . Since there are no GRANT events in T and there are unfulfilled indices in n . this
contradicts the vritiual granting property. U

21

N ow we are-(rea(dI\ to 1) Jri'elI t theIvI rui ItI proof.

Proof. (i f l1teoreit 1-.9) Astule t hat weo Ilave it part tilkt cent ralized resource allocation
alogorithm Ii 3t.l I em mla 1. 10, I a ;I-iliw It *oit Ioss of' generalit ' that the mnan ager is
act ivo. WVe ex pl Wi ll coiiea tact a (-l(Iw) t imed1 execti on inl which the response time for a
patrticuilar grit lit IS ;It le"."I

We fstcoilst 1,11t t InIitial cilmi. 1,,. We begini bY allowing some LOC'AL events to
occr aa a rho rarv dliowa ble I juie-s). entding, wO h both a 1.O(ALI event anid a TICK event
(x(*urrjll, at exactl lv tltlie c,. III that order. .Notice, 1 at by the(greaut wticll-frow-iidrwss I)roperty\
Itiese LOC0(AL eventls 1111st he PI.SF evenlts. We let

R T(E Q I R1Sf) VQi~ ('./1-I'S T11 - 1)

'vlt lall i IItledate vY aft't e 11 -1.,n ; '1(IK ovetits. also at Ilile C'. Yortually.
let he, it limed it(,III XV~tI ll that extenlds alnot her~ tititl setl-exectitioti conta~inting only

o: f venit. -sch I hit

.chcfdl1, = ,I.hd(h) (7. C,) (TICK. 1-) (!Il"Q I C.S.(). c2 , (I? EQUEST(n - I)- C2)

where 7,is an LSL ev' lit. Note t hat i- I ;ire titiufillcl indices in *3(, and that LOCAL
;1nt(T(IK events occutr lit I t tit i te C, , .) Il rt hierniore. note that 3o is heavily ioaded
starting froml timei to =~ 1 =t C2.

St art intg frc ni 3o. wo? constrlif tSu ccressive proper extensions 31...........such that for
each A- > I. 3A. is a slow t itid seli-excut ion oftI lie form 3k 17k that ends at timetk =t,,d(.3k).

I ha t is hea vily loaded ,t art i g from timue to, and that hias the following properties:

I k eta)I N"1 wih GllN)1k 'Q UbF(/L) atnd FIXIS~i(k) evenits. occturring itt that
orId 'r a t jutle tk.

2. There are no otli hr ? Q 1V1 or GRANT .V events in -k.

.3. .A !.O(1. evetnt (othtertI Ihi tllie(, 11.4.\ T p) and a I IW! event occttr in .3k at tittle tk.

'iht((ol(ititritctioti i, dotte induct ~ivelv: the, ba~c (iiW is the constrtuction of .I . Since lo hids
a LOCA .41. ad a TICK ;v~it aT itte t,1,,(andi thIere are unlulftlled indices- in 30. we can
apply) N Let-ria L. I Ito get alt fixictlioti .11 withI the properties ab~ove.

Fo (, he iuict i lop1 . il"iittI' %Wi cotil Out rtt1ct ed a sldow t inued semlil-exec1tionl 3k . for
4- > k wiIth die albove plropiertijes: we show how to ionstrutc t 3 k- Si lice ilk-[is heavil ' loaded
Startiig ait tittic 1". atid JOCM '..aild TICK eveits occur in 1 k-t at time tkl1 We canl apply'
Letltina 1.1 1 to l-. att d get a slow timited semtti -execti tiou 3k that eXten"d /4s3 -1 sitcit th- ~t

1k

00Yi Yk

t o0 t t k-1 t k

SIII I

GRANT (j 1) GRANT UJk- 1) GRANT (Ik)

Figure 3: The timed execution 3k.

sched(/3k) = sched(A3k-1'6k) (GRANT(jk),tk) (REQUEST(jk),tk) (FINISH(jk), tk),

where tk = t,,d(O3k-lak), LOCAL and TICK events occur in Ok-_ak at time tk, and there are

no REQUEST or GRANT events in or. Let 'Yk be such that

3k = Ok-,Y -

Clearly, Jk has the required properties.

The timed execution 3k is depicted in Figure 3.

Claim 4.12 For any k > 1, there are at least

[(M + l)/clj 4- 1

ticks in segment yk of 3 k.

Proof: Suppose this is not the case, for some fixed k. Then we mod.fy 13k to get a new timed

semi-execution 3k, in which the mutual exclusion property is violated.

First, we do some retiming without changing the order of any of the events. Segment -k of

.3k is "shrunk" in 3k so that all ticks contained within segrentm -k take time exactly c, (rather

23

ni ~ ~ ~ ~ ~ ~ ~ ~~" F.' ~ovr t UAYIA t IQU.'(ki I) and~ theP FINIVS1(Jk- l
IH C111 I M i.1 ii it' I. I ML'' '(tl t o tI) O Ill at tilllt' 'k- I + 1: someW ! ,SE stePs after

I]NYI 4) I j-. 1 ,it t'itt tk lw(;l-IIwit x Ie I1U 'K tlav n (,cl also to hta ve their tities ilt crase d sl Igh t.l
ln mitiilM tlatu~'it If. Ilw 1*he . Iathi I < l 1. anid the fact that there is a LOCAL e'vet

pr~ei l \N, I11 j. ' .Ith, liellie tihu)' M>>,igilllent, it follows that Ilhe resulting sequience

%V" ~ I).)11il 1; i). I) Vil, IAAI-IIl Okl fr1mm tunei tk-- +I to timle lb.. after RATikI
hill itw I hal , it I ilii'M I 'lli-e'xeclltill. li sliowijigy that mloviuig the(F'INISH event to a

later I it'w (t. itii Iw 6dte III(m upt1wr1) hoid) I lie, tm 11 bet ween (?A NT(jk-) and(helt
(C)ri'-()olIdili!, II.lIi.-I I. 13' tit illp t foi1[)il. there are at mlost [(+ /)/clij ticks inl

'.)(cl (Ill .. A-, (Ii'>\- A j;-I) olilir> at till)) V'l + I, while VJAISII(jki) occurs at timec lk.

lhe total m1le bltwt't'i t lieeI \VO) events is at hloist

So \Vt ;av'oltiiIt IIIOIid 'illi-eXeucit loll ill wvhichi thle i1)011((xcIUns1*on property is violated.
B v l1eliii) 2.3. 1' -itt lie telidel to a tiiiieul cectutli this contrttadicts tite correctneoss of

fll. i dali low.'-hu

We tclt Il til' I ttte II(l((I o t' t)rt'li 1-9- SIner(' A- e-Vei' /' > 1 k is heavily loaded starting
flsoi t1w 1' ,~~) l t1(Il' ;1hiotjtlll ?,Ika fie's tie((i)O r(ota Ira tji) prolpertv, there exists k' suich

t l rIvel'.v 1. 0) < I < // - I at least one GRAN.T .V'i) event appears in Ilk, at or after t ifli ti.
If ,v till,'itiai'' reaso)lmig. there exists, k'" > V' such thiat for ex'eri. 0 < I' < n - 1 at least one(
(dlAX NliI ''' o lt apjw(a I., I' II j mkmI~ till)(' k'- It follows that there is somle 1'. 0 < I < p -I
fl vIii cli Thlt' are two mnotist'ct e GR.4N\T(i) events inl .1k,, havinug at least n - 1 intervetiing
GRA;X .\I eei for j j) . Suppose that thel first of thlese CHANT (Oi evenits occurs at tinie

1,,and tie me~cmid alt t itii (it must he that k,2 -k-I > ii. .Note thiat the REQUEST(i) event
)rr'>ul i g Iliel(' of' t hee (? .G AN'I'i) ('k'enItsoci s at t il tte . BY the remark

after C lalim 1.12 Ili(' tIt al iliuillit Of timeI frot11 iIW tin 11 in W, hen Rl'QUS1' I)ocus
I liti)ol'~titiw (RN?<\ .') occiirs, at titne(1k, is at least

lloV')ii,' iI l))ii I a ittd selII-tti-(eutioi o' Ii which the GR..AN\f(AJt) e'Ilt

,('fI-r~o- 1 1,;1'tilti 'ffi-ex'crlt foil 'illc(' I < , atill silice thwe Is, a LOC(ALI ev'ent precedlit-g
GlA Y1/ ; ' it'11f /,t_ Ill 1;., . 1 It ollow.s t11nt IIlie total a 11)0)1 lit oif tit1le fiotuil tte(1k, inlb

x~l~'ti RQI I'.~Iti (c ljr>. iii tl~ t, cmr's p)ll dili' CIANT(i') occurs at little 1k. + I- is at
lst

21

l[C2(I?? + 1)/c11 + l)] + I

Since I (an be extended to a timed execution (By Lemma 2.3) the Theorem follows. U

We note that Theorem 4.7 seems quite robust in that it can be extended to any reasonable
model. including those in which the manager takes steps only in response to inputs. However.
the better lower bound in Theorem 4.9 depends more heavily on the features of the timed
automaton model. Note that the limiting case of the lower bound in Theorem 4.9 is

,[,M/clj + 1]c 2 .

which is slightly better than the lower)ounld given by Theorem -4.7.

5 A Distributed System

Now we consider the case where the computer system is distributed. We assume that the events
concerning the different moving i)arts occur at separate manager processes pi,O < i < n - 1.
which communicate over unidirectional channels. More precisely, for each ordered pair (i,j),
I -$J, we assume that there is a channel automaton channcl(i,j) representing a channel from pi
to pj, having SEND events as inputs and RECEIVE events as outputs. The channel operates
as a FIFO queue; when the queue is nonenlpty, the channel is always enabled to deliver the first
item. All RECEIVE actions are in the same partition class, with associated bounds [0, d]; this
means that the channel will deliver the first item on the queue within time d. Also, we assume
that there is a separate clock. ciock(i). for each process p,. It is similar to the centralized
clock described earlier, with output action TICK(i) that is an input to pi, and with associated
bounds [ci, c 2]. See Figure 4.

If the clocks are perfectly accurate, i.e., c = c2 ., then since all processes start at the same
time, there is a very simple algorithm that assigns to each process a peiiodic predetermined
"time slice" and whose worst case response time is n. m (plus some terms involving and c2

and I). This is optimal. 3 So, for our lower bound we will assume that c1 < c2.

3
1n fact, even if we deviate from the model by allowing accurate clocks with non-synchronized start,:, there is

an algorithm which selects synchronization points so that its worst case response time is at most n • (m + (d/2))
(plus some terms involving and c2 and 1). A corresponding lower bound can also be proved. A formal
treatment of these results requires several changes to our model, and we prefer not to present it here. The clock
synchronization algorithm of [LL84] yields synchronization points that can be used by a distributed allocation
a!gorithm whose response time is at most n in + (n - l1)d. Since the lower boud of [Lt 8.1] implies that this
clock synchroniztion algorit hIn is optimal, it does not appear that a naive use of clock synchronization produces
optimal resour ce allocation algorit hIns.

25

Qrocess(\ 0 ._Crannel IJ process(j)

GRANIT(i) REQUEST(i) 7GRANT(i) REQUEST(j)

Figure 4: The architecture of the distributed control system.

5.1 The Upper Bound

5.1.1 The Algorithm

The following algorithm implements a round-robin granting policy: The processes issue grants
when they are in possession of a token that circulates on a ring.

Assume processes are numbered 0, ... , n - 1 in clockwise order, and interpret i + 1 to be i +
I mod n. Each process pi has input actions REQ UEST(i), TICK(i) and RECEIVE-TOKEN(i),
output actions GRANT(i) and SEND-TOKEN(i), and internal action ELSE(i). The state of
process i is divided into components:

REQUESTED holding a Boolean value, initially false;
TIMER holding an integer, initially 0;
TICKED holding a Boolean value, initially true;
TOKEN holding a value in {not-here, available, used},

initially used for Po, not-here for the other processes.

Process pi executes the following algorithm:
REQ UEST(i)
Effect:

REQUESTED := true

TICK(i)
Effect:

TIMER := TIMER -1
TICKED: = true

26

GRAXT(i)
Precondition:

REQUESTED tnz,
TOKEN = atailablc
TICKED true

Effect:
REQUESTED := false
TOKEN := used
TINIER := [(m + 1)/ci] + I
TICKED := false

SEND-TOKEV(i) /* to process pi+j */
Precondition:

TOKEN = used
TIMER < 0

Effect:
TOKEN := not-here
TICKED := false

ELSE(i)
Precondition:

neither GRANT(i) nor SEND-TOKEN(i) is enabled
Effect:

TICKED := false

RECEIVE-TOKEN(i)
Effect:

if REQUESTED then TOKEN := available else TOKEN := used

5.1.2 Correctness Proof

Now let B be the composition of all the given timed automata: operators, moving parts.
processes, channels and clocks. This subsection is devoted to proving the following theorem.

Theorem 5.1 Algorithm B is a correct distributed resource allocation algorithm.

As in the proof of the centralized algorithm, we construct the I/O automaton timne(B).
This time, the new state components are ('time, plus, for each i, Ftim and Ltime for the
following partition classes:

27

1. REQUEST(i), which contains the singhl action REQUEST(i),

2. FIXISI(i), which contains thc single action FINISH(i),

3. TICK(i) which contains the single action TI('I(i). and

4. LOCAL(i). the class of locally controlled actions of process i, which contains all the

actions GRANT(i). SEND-TOKEN(i) and ELSE(i).

Initially, we have Ftine(REQUEST(i)) = 0, Ltimc(REQUEST(Oi))= cc, Ftime(FINISH(i))

0 and Ltimc(FINISH(i)) oc, Ftirni(TICK(i)) = cl, Ltime(TICK(i)) = c2 , Ftime(LOCAL(i))

0 and Ltime(LOCAL(i)) 1.

Let #tokc.s(i) be the length of the queue in channel(i, i+1). We first prove alemma giving

an invariant for timc(B): this invariant happens not to involve any of the state components
that encode time information. The proof appears in Appendix A.2.

Lemma 5.2 Let s b(a reachable state of tinae(B). Then the total number of processes at

which TOKEN 5 not-hcr plus the sain of #tokens(i), over 0 < i < n, is exactly 1.

We now prove another invariant, this one involving the timing information. The result is
similar to Lemma 4.2. The proof is in Appendix A.3.

Lemma 5.3 Let s be a reachablk state of timi(B), and let 0 < i < n - 1. Then the following

all hold:

1. If FINISH(i) is -nabled in s.Astate, then

(a) s.TIMER(i) > 0.

(b) s.Ftime(TIC'K(i)) + (s. TI:IER(i) - l)c1 > s.Ltime(FINISH(i)), and

(c) s. TOKEN(i) = used.

2. If s. TICKED(i) = truc' then .. Ftime(T' (i)) > s.Ltime(LOCAL(i)) + c, - I.

The following corollary implies that mutual exclusion is maintained by the algorithm.

Corollary 5.4 In atty reachable stat(.; of 11. if FINISII(i) is cnabled, for sonte i, then

FINISI(j) is not fenablcd for all j j i.

Proof: Assu ni to the contrary that IINISIIt(j) is enabled ii ,;, for j 4 i. Since FINISH(i)

and FINISH(j) aro both enablod in s. invariant 1c (proved in Lemma 5.3) implies that

s.TOIKEN(i) = s.TONFN(j) = used

28

But this implies that the number of processes for which TOKEN 5 not-here is at least two.
contradicting Lemma 5.2. Therefore, this case cannot occur. M

Proof: (of Theorem 5.1) Corollary 5.4 implies nutual exclusion. Moving part well-formedness
follows from the same corollary and the definition of the moving part. Request well-formedness
follows from the definitions of the operators and the processes. Eventual granting can be ar-
nsued from the round-robin behavior of the processes; it also follows from the upper bound on
response time proved formally in the following subsection. U

5.2 Response Time

Now we prove the upper boincd on response time for the given distril)uted algorithm B.

Theorem 5.5 The worst cost response timc for algorithm B is at most

n[c2 (L(m + 1)lcl + 1) + d + c2 + 21].

We use the following lemmas.

Lemma 5.6 In any reachablc state s, and for any i,

s. TIMER(i) :S L(,- Il)/clJ 1.

Proof: By an easy induction. U

Lemma 5.7 Let s be any state occurring in a timed execution, in which s. TIMER(i) :_ k, for
k > 1. Then (at least) one of the following two conditions holds.

1. s. TIMER(i) < 0 and s. TICKED(i) = true, or

2. the time from the given occurrence ofs until a later TICK(i) event resulting in TIMER(i) _
0 is bounded above by c 2 • k.

Proof: As for Lemma 4.6.

Say that process pi is opcrative in state .4 if s.TOKEN(i) = used. By Lemina 5.2 at any
time there is at most one operative process.

Lemma 5.8 If process pi is operative, then the time until proccs.s pi+ beones operat! , (it

n o.s2

29

(2(M + l)/c1J + 1) + d +-2 + 21.

Proof: By Lemmas 5.6 and 5.7, either TIMER(i) _< 0 and TICKED(i) = true, or else within

time

c2 ([(,n +)/cIJ + 1)

a TICK(i) event occurs setting TIMER(i) K 0: in either case, SEND-TOKEN(i) will be

enabled wit hin time

C, ([(In + l)/cjJ + 1)

Within time / after that. SE\'D-TOKEN(i) will occur and RECEIVE-TOKEN(i + 1) will be

enabled (since it is the only message in the channel), and within an additional time d, it will
be execute(]. If there is a pending request at process Pi+1 when this RECEIVE-TOKEN(i + 1)
occurs, i.e.. if REQUESTED(i+l) = true at this point, then this REC'EIVE-TOKEN(i+1) will
set TOKEN(i+ 1) acailable. Then within time c2 , GRANT(i+ 1) will be enabled and within

time I it will be executed, causing process pi+ to become operative. On the other hand, if there
is no pending request, i.e., REQUESTED(i + 1) = false, then the RECEIVE-TOKEN(i + 1)
will set TOKEN(i + 1) = used and thereby cause process Pi+l to become operative. N

Define the distance from process pi to process Pm to be the distance between them along
the ring (in the clockwise direction); if i = j we define the distance to be n.

Proof: (of Theorem .5.5) ''insider the point in the timed execution at which a request arrives,
say at process p,. We consider cases (one of which must hold, by Lemna 5.2).

1. There is some operative proces pi, whcn the request arrives (where it is possible that
i = '). Then the distaice from pi to pj is at, most n. Applying Lemma 5.8 repeatedly

(at most n times) yields the claimed bound.

2. The value of TOKEN(i) = available for some i. If i j, then the request will be
granted within time c2 + 1. If i 5 j, then within time e2 +1, process pi becomes operative.
Applying Leinnia 5.8 repeatedlv (at most n - 1 times) yields the claimed bound.

3. There is a message in one of the channels, say channel(i - 1, i). If i = j, then the request
will be granted within time d + c2 + I. If i $ j. then within time d + C2 + 1, process
pi becomes operative. Applying Lemma 5.8 repeatedly (at most it - 1 times) yields the
Claimed bound.

.\gain. we note that tie limitijig case of the upper bound as / al)proaches 0. is

?I [C, It (I + I) + (+ C 2 .

30

5.3 Lower Bound

Now we prove our lower bound on worst case response time for arl)itrary distributed resource
allocation algorithms. This proof is similar to that of the simple lower bound for centralized
algorithms (Theorem 4.7) rather than the more complicated tight bound (Theorem 4.9) in that
we do not concern ourselves with process step time or with roundoffs. As a result, this proof
seems sufficiently robust to extend to other reasonable models for timing-based computation.

Note that the gap between our upper and lower bounds for the distributed case does not
only involve process step times and roundoffs, but also involves additive terms of d and of 71 .c 2.

In order to prove this lower bound we must make the assumption that the moving time is
much larger than the message delivery time, more precisely, that (n - 1). d < m(c 2 /c,).

Theorem 5.9 Assume that c1 < c2 and that (n - 1) - d < nI • (c 2 /c I). Then the worst case
response tine of any distributed resource allocation algorithm is at least

n -c 2 (n/c) + (n - 1) d .

The lower bound is proved under the assumption that every message is delivered within
time d. This is a stronger assumption than the one used for the upper bound; there, we
only insist that this upper bound hold for the first message on any link. Since the present
assumption is stronger, it only serves to strengthen the lower bound.

In the proof we first show that the round-robin granting policy used by the algorithm of
Section 5.1 is optimal in the following sense: for any "efficient" algorithm, in any execution
in which requests arrive continuously, the order in which requests are first granted must be
repeated in a round-robin fashion.

Once such an order has been established, we extend the execution while fixing a particular
pattern of message delays. After doing this for a sufficiently long time, we retime parts of the
execution by carefully "shifting" certain events, while appropriately retiming other events, to
get the desired time bound.

Recall the definition of a heavily loaded timed execution or timed semi-execution from
Section .4.2. In a manner similar to the centralized case. we define a timed execution or timed
semi-execution to be slow if, for each i, the times between successive TICK(i) events (and the
time of the first TICK(i) event) are exactly c2. The following lemma is the distributed version
of Lemma 4.8.

Lemma 5.10 Let a b(- a slou timed execution of a correct distributed resource allocation al-
gorithm. Then the time between any two conscctit' GRANT events in ,v is strictly greatcr
than

e2 (,,,/cm .

:1

The next lemma shows itat if a-,i ,xecut ion is heavily loaded, the best policy (for a "-ef-
ficient- algorithin) is to grant tie resource in a round robin manner. because changing the
gra ting order will cause the response time to exceed a bound higher than the one we are

atteipting to prove as a lower bound.

Lemma 5.11 L t B b(- a di.,tribit(d resoreo allocation algorithm with response time at most
it + 1) In /c,). Let It 1(slow tined ('cxt ion of B that is heavily loaded starting from

ti in /. 1h1(1 flit 1.(e'i.t.s .,oin(permuitation, p. of {0.. n - 1} such that the subsequence of

all GR.ANT (i'i.t that occur in o (iftcr tim(t i.; of the form

GRANT(p). (u'JIAX'(p,,_1) .GANi.pn).. R.4T(p 1),.

Proof: Sn ppose by way of coit radiction that there is no such permutation p. Then there is
sofeC in(IPX i for which two GRANT(i) ,wetts 71 and r 2 occur (at times t and t2 respectively)
after time t. where there are at least n GRANT(j) events, j i, intervening between r1 and

By Lemma .5.10, the time between any two consecutive GRANT events from among this
set of n + I GRANT events is strictly greater than c2(m/c1). Therefore, the time between ,rl
and w2 is strictly greater than

(n + 1) • c,(i/ c).

Since o is heavily loaded, a REQUEST(i) event must follow 7r, and occur at time tj. Since
that REQLEST(i) is fulfilled bv 7 2 at time t2 , the response time for that REQUEST(i) is
strictly greater than (n + I). c2(m/cl), which contradicts the assumed bound on the response
time of the algorithm. U

Proof: (of Theorem 5.9) Assume by way of contradiction thai there is some algorithm that
always responds withi ti ne

I, .(2(1i1/ 1) + (1 - I)d

BY asM1inlption

(n - I rn(c2 /C)

which implies that

I' ((iMI/CI)+(- I)) +(+ I .C 2 (I/Cl

Thus. lIh response timev for tlie alorithl is at mtost

32

(1 + 1).c 2(M/ci).

We will construct a slow timed execution of the algorithm that either exceeds the claimed

bound on response time or violates the mutual exclusion l)roperty. We begin by considering
a slow timed execution a' that is heavily loaded starting from some time t. and letting a be

the shortest prefix of this timed execution that ends just after exactly n GRANT events have
occurrpd after time t. Lemma 5.11 implies that there is some permutation p, such that all

GRANT events that appear in a' after time t occur in the order Po' .. ,Pn-1,Po, . . In fact.

Lemma 5.11 implies that GRANT events that occur after time t in any timed seni-execution
that extends a and is heavily loaded starting from time t. appear in the order p0... fPn-1.

We sometimes abuse notation and write pp, < pp, when i < j, that is pp, precedes pp, in the
the order established by p.

We now consider the "ring" of processes formed by the round-robin order defined above.

We extend the execution in such a way that messages are delivered with maximum delay when

sent from lower numbered processes to higher numbered processes (in the order established by
p). while messages going the other way are delivered immediately. Intuitively, this enables us

to "postpone" notification of the granting as long as possible.

More formally, we extend a to get a slow timed execution ao' which is heavily loaded
starting from time t and such that the message delivery times for messages sent in 0i' are as

follows:

0 If I < j, then a message from pp, to pp, takes exactly time d.

* If i > j, then a message from pp, to pp1 takes exactly time 0.

Let al be a "sufficiently long" prefix of a,3'. specifically, one for which

C< t end(O/) - tend() - d

C2 tend(a/3) - tend(&1)

This can be easily done since, by assumption, cl/c2 < 1. Let ri = t ,j(a) and r 2 = tend(/ 3).

Let -y be such that a/37 = aY. We know that -1 contains a subsequence of n + 1 consecutive

GRANT events, in order

GRANT(po), GRANT(p),.... GRANT(p,,_1), GRANT(po).

Now divide - into n + 2 seginmets, %. ,,+. where

1. -o ends with the first of these GRANT(po) events.

2. for each i. I < i < n - 1. ", starts just after GR.ANT(piI) and ends with GflANT(pi).

3aa

3. 1, starts just after GRANT(p,-i) and ends with the second GRANT(po), and

-1. ,,+j includes the rest of .

For each i.0 < i < n - 1, let t, = te,,(And3"0 ,J. For any I < I < n, define the length of any
segment /y, to be f, ti - t -1. Intuitively, (i is the amount of time that passes during yi.

Figure 5 depicts the timed execution a3-. Each horizontal line represents events happening
at one process, the arrows show delay times between pairs of processes (after time ro), while
dashed vertical lines mark time points that are used in the proof.

We now prove a key lemma that provides a lower bound for the length of each segment

1.- -1.

Lemma 5.12 For any i, I < i < n - 1,

[, > c2(m/c 1) + d.

Proof: Assume by way of contradiction that

(i_ c2(m/c 1) + d

for some particular i, 1 < i K n - 1.

From a3 t we construct a new timed execution, ab, in which the mutual exclusion property
is violated. We first construct an intermediate timed execution a' in which we "shift" back
in time the events occurring at processes pp,. . pp,1-1, in the following way:

1. Each event occurring at any of the processes p 0 , ... Pp,- that occurs in 3Y at time u,
also occurs in 6' at time it.

2. Each event occurring at any of the processes pp, . . , PPn that occurs in 0-y at time u,
occurs in 6' at time u' where:

(a) If 11 > r2 then u' = it - d.

(b) If r, < u < r 2 then

+ 7 2 - 7,1 -- d

P2 -r

L.e..,,' - = _
it- r, 12-1

That is, the events occurring at processes > p,, at times > r2 are moved d earlier; notice that
events occurring in a (at tites < r,) are not moved. All the intermediate events are shifted
back proportionally.

hlie resulting sequences of timed events in ist be merged into a single sequence consistentlv
with the order of tie times: "velts occurriiing at different processes at the same time can be
merged in arbitrar 'v order. except that a. SNI) event that corresponds to a RECEIVE event
in (11 must precede it in (W.

3.1

ay

1r 2 It 0It 1Itn1 It

GRANT() GRANT(P

PINI I I I I -_
kI I GRANT (p)I

d 0 0

I ddII

I

I. I

p

I rRANT (V

Figure 5: The timed execution a/3-y.

35

Claim 5.13 ,io" t ., a ,,t1of1 . ylhm.

Proof: The key lhing, that need to be shown are:

" No llemsage P, received Ie foilt is sell.

" No insage takes nmore than time d to be delivered.

" No clock tick takes tin less than i .

For the first two conditions. notice that in 31 we have tiat messages take time:

* d fromli all processes < ip to all procsse /p,, anld

* 0 in the reverse direction.

We are only shifting events of processes > p,, earlier by at most d. so message delivery time is
kept < d. and no message is received before it is sent.

For the third condition. note that all clock tick intervals are of length c2 in a.-, and no
portion of this timed execution is shrunk by more than the ratio

r2 - t -d
r 2 -- ri

As the original lengtt of the tick interval was c,, the aew length of a clock tick interval is at
least

2 - 1 -d

712

by tle way .1 was selected. This completes the proof of Claim 5.13.

Now vwe resume the proof of Lemma 5.12. Note the followiit,), additional properties of o:

" A. clock tick interval at a proces, < p,,_, takes time exactly "2-

" Any clock tick interval at a process > /),, ihat begins at a time > r - d takes time
exactly c2 .

• Alny clock tick itterval at a process > p, that begin.s al a time < r1 - d and ends at a
time , > '2 takes time at least - c2 + (c- (u - C

SJ lhe leigt it of the new solment corresponding to is at most c 2 (i/cl)"

36

Now to get fronm ,11' \ "lrik th poll u of (1 ' altei tin 10 2 w) it(, railo (cI /c2)

aiid llove tlhl.\'llk('._t),,vfl (of.,,IS ei,''it 2.i) after tie (1RANT(p) cveIlt (at the Cd of

-1jnlit). tHlls, 'reatil a violation1 of Il, iun/a l (,iI.,Iil propert y. More precisely. if an
oelit liappolls t tiiiit i n' 1l1 (a . tIhon thII (I 'r+'p l(lilg ('"V''Iiig hiappeins at time a in o . where:

I. If < < r. then = I.

2. If ?I > r). then t' r.2 + (c 1/c2)(?n - r2).

Claim 5.14 ci I., (IItt t m d(-.r a I ioi? of Ith(. I/. .

Proof: The key things that need to be shown are:

" No clock tick interval is snaller than Ct.

" The Fl.Y1It(p, _) ovent occ urs within li mo in after t he correspon ding (;.ANT(p-)
event.

For the first condIition. if a lick interval happons atl process 1) < P,,, or a tick interval

starts no sootier thani tille 12 - (I ill "' , tlien this clearly holds. since the properties of 'ja'

staled above ini plie that those itervals are of'length c2.

The oilv case left is that of a tick interval that occurs at a process > p, and starts before

r. - d in o'. Le.t a be tlio tine at which tlie interval ends in oW. If U < 7'2. then the interval is

not shrunk at all. so we caii assume t hal a > r2. Then by t he properties of o' stated above,

tile length of this interval in Co' is at least t - 72 + (C2 - II - rI))(cI/c2). But in going from
rY' to 0 . only the portion of tie(interval after tiiin 1'2 gets shrunk; therefore, the length of
the new interval is at least

(ai - r 2)(C IC2) + (c 2 - (I - 12))(c /C ' 2 - cl,

as Iieched for the first condition.

Yor the second condition, the time hetveeii the GRANT(p'_) and tie GRANT(/f,) in

o,. i... Ilie lelth oft lil, segtnlont corrspol ldil,., to -, in ,. is ilt tnost In: hence ritoving

FfIJt(p,_) after (A4.XT(\I doe,ls ot violate ti f tipper bound.

Hi is ITI mlntplet tl, li e pro of ('laini 5. II.

To (omplt, t, lie pr oof oft' Iiulima 5.12. we need o11v observe that n is a limed execttion
f the .Y,-,,n ill which I1 li 11/a11 (.r<lii.hoi, property is violat'ud. a contradiction. 0

To compltpete thlie proof of "l1lieornil .5.9. consider tlie execiutioni /4" and consider lie
l?.JQI IK'.T(p1)n that Occurs just aftor lie first of the desigiiated (GRANT(po) events in -1.

F~rom leintnia .5.10 it follows tlta

3 7

lugether %kith Lemmtia 5.12 thi.s iiph~les that the total time from that ?EQUEST(po) event

ilil thecoresiioiidillg (flA Xi(pa I event is strit greater t han

(11 AcI~ (li +i (/) + ,(III/(.,) = ! (I llC + r (11 - I hi

6 Discussion arnd Open Problems

In thiL pape'r. we have defl id at tiiiiiig-hased variant of' thle miutunal excilisil I roblem. and(
hiave cons'idered bioth Iieltr;lize~l ai'l (list ribuited soluitionis to tis problemi. Wec have provedl
up per hounds for both ICases. hilseVl Oil simpie algloritltiiis: theise b)ounds(arc fairly complicated
fnnct ions; of clock time. niallagelr proes step ti lie, mnoving time for the moving parts, andi
iit Ilie (l.Obit) edi case, nilessage (llhverv tinie.

WVe also hiav pcjrovedi correspondintg lower hounds for hothI cases. Ini the centralized case.
the lower boun d exactly 'a v inlies the upper hoaiiid. even when the manager step) time and the
roiln(oFk are coIIi i(eredl lit tlie more comiplicate(d d istribunted setting, thre lowver bound is very
close to t he uppe b)~ on id. hut (foes niot mnatcih it exactliy.

Tle Iloundus arie all 1iro%-,l usinig thle tjill(d ai itona ton model for timning-hascd concurrent
s ,vsteils. It is interesting to ask how (lepenident thie results are onl this choice of model. The

I ielld a (it oni a toil model dif~e rs [0111l soime others in modeling process steps explicitly (rat her
than assil iigf the aigorilt i s are interrupt-driveit I: thiums, our. resuits invoiving this process step

ti ii wonl riot b11le ('NpiCt ed to ext end inmiediat civ to stuch iiiterruipt -drivemi models.,; ep
possibhlv in th li imit . as thIis step timen approaches zero) I. owever, sonic of our results, - most
not ablY. t lie lower bound1(for t lie (list riutci case - do riot involve process -step t im[es aid thu ils

appear I o he qilt (iodel-iildepend~eit. .A i alternative approach would he to ulse a general
mnodeldi at descr[ibes interr[lpt - (rie Vci ompJu tation, b ut we ulo tiot yet knowv (in general) how
to (ldfill 11 tiicdl0((.

Thiere are several opv)C quiestions dirictly related I- the work iiresented in tis paper. Flirst.
there, is a gap reiiia iim g et weel II(ui ip per antd lower hond(results for the distributed resoutrce

alioca itin iproldi(nl . E1venl neglect inig process step t i me, there is a (Iifferenice of aii additive terms
of d. the(uppe~fr hon id oil illessage (deli very time, iilk Id aC2, tiren) numher of processes t imecs the
upper boiunid oil Ikle clock tick timue. iPrelimiinarY resnuits suggest that under certain assumptions
ahout I tlie relative sizes of' thle pa raniieto('s, thle upper bound1(canl be reduced by app~roximiately
d. I however, we (10]ot vet hiave at generalI resiiit abo)0ut tis.

Oii r lowker 1)1)11 nd for t li Ik-oi i ued re'son rue allocat ion probleni assutiies that, (it - 1) d <

III c (C2. It wonl b(e inite(resting to see(if tillis a.sli ptionl canl he removed.

It would also be hiteres' ii, to consider the Same problern in a iiiodel in which there are
non trivial lower boun ds oni the time for lmessage delivery (an(perhaps for process steps).
While our upper bonid proof)s slill work it) this i situation. the same is not true for our lower
bound proofs. The strategv of shrinkini and shifting timed executions to produce other timed
executions beconies nuch lore delicate whe lower bounds oii these various kinds of events

must also be respected.

Our results imply that the ratio c2 ,/c1 has a significant impact on the response time of
the systeni. It would also be interesting to consider the case where a process has more than
oe clock, say an additional clock with bounds [c'. K]. We would like to understand how he
results dcpend on the four parameters c1 . 2.c' and c'.

Other related problems can also be studied using tile models and techniques of this paper.
Oa could deline timing-based analogs of other prohlems besides mutual exclusion that have
h'en s Iudied in tie asuchr mnous setting (for example. other exclusion problems such as the
dioing philosophcr, pr o)bleni. distributed consensus problems. or synchronization problems such
as the sf.sion problcm of [A',81]): it should be possible to obtain combinatorial results about
hem in t lie st ve of the results of this pa)er. Iln addition to defining variants of asynchronous

problems. one call also extract prototypical problems from ipractical real-time systems research
and use them as a ba,is for combinatorial work.

In another direction. the algorithm proofs presented here suggests general approaches to
verification of real-time systems. As mentioned in Section 4.1.3. we believe that there may be
a unified method for treating co,'rcrtn.ss and pcrforrnancc analysis of timing-based algorithms.
and are currently exploring this possibility in [LA].

Work of the sort presented here (and the extensions proposed above) should provide an
excellent basis for evaluating the timed automaton model as a general model for reasoning
about timing-based systems (and comparing it with alternative models for timing-based com-
putation).

Acknowledgements

We would like to thank Nancy Leveson for providing us with background information on real-
time systems, and for suggestions and encouragement in the early stages of this work. Thanks
al' also due to Jennifer Welch for discussions about clock synchronization and for reading the
paper and providing us with ver.y valuable comments. We would also like to thank Michael
Merritt and Mark Tuttle for discussions about modeling time and John Keen and Steve Ponzio
for comments on earlier versions of this paper.

39

References

[:AFL s] E. Arjomandi, M. J. Fischer and N. Lynch, "'Efficiency of synchronous versus
asynchronous distributed systems," Journal of the ACM, Vol. 30, No. 3 (July

1983). pp. 449--456.

[13 ll 1] A. Bernstein and P. Harter, Jr. "Proving real-time properties of programs with
temporal logic," Proc. 8th Syrup. on Operating System Principles. Operating

Systems Review, Vol. 15, No. 5 (December 1981), pp. 1-11.

[('R8: 31 J. E. Coolahan and N. Roussopoultus. "Timing requirements for time-driven svs-
tens using augmented Petri nets." IEE Transactions on Software Engineering,
Vol. SE-9. No. 5 (September 1983). pp. 603-616.

D S .5] B. Dasarathy, "Timi ng constraints of real-time systems: Constructs for expressing
them. methods for validating them," IEEE Transactions on Software Engineering,
Vol. SE-11. No. I (January 1985), pp. 80-86.

[Dl[Ss6] D. Dolev. J. Halpern and 11. R. Strong, "On the possibility and impossibility
of achieving clock synchronization." Journal of Computer and Systems Sciences,

Vol. 32, No. 2 (1986) pp. 230-250.

[1MNN185] J. Halpern, N. Megiddo and A. A. Munshi, "Optimai precision in the presence of

uncertainty." Journal of Complexity. Vol. 1 (1985), pp. 170-196.

[tISI] V. 11. Hasse, "Real-time behavior of programs," IEEE Transactions on Software
Engineering, Vol. SE-7, No. 5 (September 1981), pp. 494-501.

[HGR87] C. Hiuizing, R. Gerth, and W. P. deRoever, "Full abstraction of a real-time deno-
tational semantics for an OCCAM-like language," in Proc. 14th ACM Symp. on
Principles of Programming Languages, 1987, pp. 223-237.

[JM86] F. Jahanian and A. Mok, "Safety analysis of timing properties in real-time sys-
tems," IEEE Transactions on Software Engineering. Vol. SE-12, No. 9 (September
1986), pp. 890 904.

[JN87] F .. ahanian and A. Mok, 'A graph-theoretic approach for timing analysis and
its implementation." IEEE Transactions on Computers. Vol. C-36, No. 8 (August1987), pp. 961-975.

[KSRGA88] R. Koymans, R. K. Shyamasundar, W. P. deRoever, R. Gerth, and S. Arun-
Kumar, "Conpositional semantics for real-time distributed computing," Infor-
ination and ('omputation, Vol. 79, No. 3 (December 1988), pp. 210-256.

[1,78] L. Lamport, "Time, clocks and the ordering of events in distributed systems."
Communications of the A('M, Vol. 21, No. 7 (July 1978), pp. 558-565.

10

FLSS] N. Lvvesoni and J. Stoizy. -'Safety analysis using Petri Nets," IhLI Trausactions
oni Software Engineering., Vol. SE-l;3. No. 3 (March 1987), pp. 386-397.

[LI R4] J. Lundelius and N. Lynch. '- new fault-tolerant algorithm for clock synichro-
niizatio." Iniformation anid Computationi, Vol. 77. No. 1 (April 1988), pp. 1-36.

~L8S] N.Lunch. "-Modelling real-time systemis." in Foundations of 1eal-Tinie ('omput

in-, Research Initiative, O.N1 Ii ickoff Workshop. November 1988. pp. 1-16.

LAI N Lynch and H-. Attiva, "AssertionaI Proofs for Timnig Properties." ill progress.

'LE, i F8. Lynch and M1. Tuttle. -"Hierarchicat Correctness Proofs for Distribulted Algo-
rnthms." i Proc. 7th ACJ svmp. on Priniciples of Distributed Computig, August
1987, pp. 137--151.

Expanded version available as Technical Report MIT/LCS/TR-387. L~aboratory
for Computer Science, MIT, April 1987.

[NENT88] M. Merritt. F. Modugno and M. Tuttle, "Time constrained automata,
manuscript, November 1988.

[S77] J. Sifakis, "Petri niets for p~erformnce evaluation. in Measuring, Modeling and
Evaluating Computer Systemns,"' in Proc. 3rd Svynp. IFIP Wlorkinig Group 7.3.
H. Beilner and E. Gelenbe (eds.), Amsterdam. The Netherlands. North-H1olland.
1977, pp. 75-93.

[S"WL88] B. Simons, J. L. Welch and N. Lynch, '-An overview of clock synchronization."*
IBM Technical Report RJ 6505, October 1988.

[W L88] J. L. Welch and N. Lynch, "An upper and lower bound for clock synchronization.-
Information and Control, Vol. 62. Nos. 2/3 (August/Septemiber 19S1). pp. 190-
204.

[ZLG89] A. Zwarico. I. Lee and R. Gerber, "A complete axioinatization of real-time pro-
cesses," Submitted for publication.

A Proofs of Lemmas

A.1 Proof of Lemma 4.2

The proof is by induction on the length of a finite execution, a, that ends in state s. The
base, length 0, is trivial since FINISH(i) is not enabled in any initial state. So suppose that
0 o'(.s',(r.t),) and the result holds for a' and s'. We show it holds for a and s. We
consider cases.

Case 1: ?REQUEST(j), for some j, 0 < j S n - 1, or ir = ELSE.

First suppose that FIXISII(i) is enabled in .. Astatf, for some i, 0 < i < n - I (where
i might or might not be equal to j). Then it is also enabled in s'.Astate. The inductive

hypothesis implies that

1. (a) s'.TIMER > 0.

(b) s'.Ftimc(TICK) + (s'.TIMER - I)c, > s'.Ltime(FINISH(i)), and

(c) FINISII(k) is not enabled in s'.Astat. for any k 5 i.

Since s.TIMER = s'.TIMER, we have s.TIMER > 0. Since

.. Ftiaet TICK) = s'.Ftie(TICK),

and

.,. L t Imc (FINIS11(i)) = ,s'. Lt inc (FINIS II(i)),

we have that

s.Ftime(TICK) + (s.TIMER - 1)cl > ,;.Line(FINISH(i)).

Also. FIISH(kI) is not enabled in S.Astute, for any k $4 i.
Now suppose that s.TICIKED = truc. Then it must be that r is REQUEST(j) and

'.TICKED trur. Then

S'.-tin2(TICK) > .s.Ltinic(LOCAL) + cl - 1.

Since

.s.Ftimc(TICK) .. Ftiiiu(TICh),

anid

.12

s.Ltimc(LOCAL) = s'.Llimc(LOCAL).

we have that

s.Ftime(TICK) > s.Ltin(LOCAL) + c, -1.

Case 2: 7r = FINISH(j), for some j, 0 < j < n - 1.

First suppose that FINISH(i) is enabled in s.Astate, for some i. 0 < i < n - 1. It cannot
be that i = j so j $ i. But then both FINISII(i) and FINISJI(j) are enabled in s'.Astate,
which contradicts the inductive hypothesis. Therefore, this case cannot occur.

Second, suppose that s.TICKED = true. Then the same argument as in Case 1 shows that

s.Ftime(TICK) >s.Ltime(LOCAL) + c - 1.

Case 3: 7- = TICK.

First suppose that FINISH(i) is enabled in .s.Astatf, for some i, 0 < i < n - 1. Then it is
also enabled in s'.Astate, so the inductive hypothesis implies that

1. (a) s'.TIMER > 0,

(b) s'.Fiine(TICK) + (s'.TIMIER - I)cl > s'.Ltime(FINISH(i)), and

(c) FINISH(k) is not enabled in s'.Astate, for any k 5$ i.

We first prove that s.TIMER > 0. If not, then it must be that S.TIMER = 1. Then the

inductive hypothesis implies that

s'.Ftime(TICK) > s'.Ltime(FINISH(i)).

But then the definition of time(A) implies that (TICK, t) is not enabled in s', since a FINISH(i)
must happen first. This is a contradiction.

For invariant 1b, we see that

s.Ftime(TICK) + (s.TIMER - 1)cl

= t + cl + (s'.TIMER - I - 1)cl

= t + (s.TIMER- 1)cl,

> t + s'.Ltime(FINISI!(i)) - s'.Ftime(TICK)

by inductive hypothesis,

> S;.Ltime(FINISH(i))

by the definition of time(A),

= s.Ltime(FINISII(i)).

Thus,

43

.s. ltimc(TICK) + (s..TIMER - 1)c > s.Ltime(FINISfI(i)).

The third clause carries over easily.

Now suppose (actually, it must happen) that .5.TICKED = true. Then s.Ftime(TICK) -

t + cl and s.Ltime(LOCAL) < t + 1, so

.Ftime(TICK) _ .s.Ltime(LOCAL) + el -1.

(-'n. 4: 7r = GRANT(j), for some j, 0 < j < n - 1.

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 < i < n - 1. If i $ j,
then FINISH(i) is also enabled in s'..4state. so by the inductive hypothesis. s'.TIMER > 0.
But this contradicts the preconditions of GRANT(j). Therefore, it must be that i = j.

Then the effects of GRANT(i) imply that s.TIMER > 0. Note that

.s'.Ltline(LOCAL) > t

(since GRANT is a locally controlled action) and that

s'.Ftirne(TICK) = s.Ftime(TICK).

Then

s.Ftirne(TICK) + (s.TIMER - 1)cl

= s'.Ftimne(TICK) + (s.TIMER - l)c

> s'.Ltmc(LOCAL) + cl - I + (s.TIMER - 1)cl

by inductive hypothesis. since s'.TICKED = true,

t t + cl - I + (s.TIMER- 1)cl

by the inequality above,

= + C- I + ([(? +)/lj)cl
> t + in = s.Ltime(FINISH(i)).

Thus,

s.Ftime(TICK) + (s.TIMER - f)lc > ,;.Lhime(FINISI(i))

as needed.

The mutual exclusion condition has already been shown.

It is not possible for TICKED = truc in s. by the effects of the GRANT. n

4.1

A.2 Proof of Lemnma 5.2

The proof is by induction on the length of a finite execution, a., that ends in state s. The base,
length 0, is trivial. So suppose that (t o'(r.f(t).,) and the result holds for a' and s'. We
show it holds for o and s. by considering cases.

Case 1: 7- is a REQUEST, ELSE, FINIS.,I, TICK or GRANT action.

These steps do not change the contents of any channel or the number of processes i for
which s.TOKEN(i) $ nothere.

Case 2: 7, = RECEIVE-TOKEN(j). for some j, 0 < j _ n - 1.

Since RECEIVE-TOKEN(j) is enabled in s'.Astate we have that #tokens(j - 1) > 1. By
the induction hypothesis, this implies that for all processes i, s'.TOKEN(i) = not herc. The
length of one channel queue is decreased by one, while one token state (of j) is changed from
not-here to available; thus, the total number of tokens on channels plus the number of processes
holding the token (i.e., having TOKEN 5$ nothere), is preserved.

Case 3: 7r = SEND-TOKEN(j), for some j, 0 < j < n - 1.

The number of processes for which .s.TOKEN(j) = not-here: is decreased by one relative
to s', while the number of messages on the channels is increased by one. This implies that the
sum we are intprested in remained the same.

A.3 Proof of Lemma 5.3

The proof is by induction on the length of a, finite execution, a, that ends in state s. The base.
length 0, is trivial. So suppose that a = ,'(s',(tr,t),s) and the result holds for a' and s'. We
show it holds for a and s, by considering cases.

Case 1: 7, = REQUEST(j) or 7r = ELSE(j), for some j, 0 < J < n - 1.

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 < i < n - 1 (where
i might or might not be equal to j). Then it is also enabled in s'.Astate. The inductive
hypothesis implies that:

1. (a) s'.TIMER(i) > 0.

(b) s'.Ftinc(TIChC(i)) + (s'.TIMIR(i) - l)cl > .s'.Ltime(FINISI(i)). and

(c) s'.TOKEN(i)= used.

Since s.TIMER(i) = s'.TIMER(i) we have s.TIMER(i) > 0, showing]a. Since

s.Ftime(TIKx(i)) s'.Ftime(TICK(i)),

and

.45

.,.Ltime(FIANSH ()) =s.tm(lI~.Hi))

we have that

.s. Ft im(TICK(i)) + (, .TIMER(i) - 1)e, > s.Ltiimc(FINIStI(i)).

So we have invariant lb. Invariant Ic carries over as this step does not change token states.

Now suppose that i.TICKED(i) = truc.

Then '/.TICKED(i) = truc , and

s'.Ftim-e(TICK(i)) > s'.Ltimz((LOC.AL(i)) + cl - 1.

Since

• .Ft imc(TICK(i))=..FtmTIK))

and

.s.Ltin,e(LOCAL(i)) = .'.Ltime(LOCAL(i))

we have Ihat

s.Ftimrc(TICK(i)) > s.Ltime(LOCAL(i)) + c, -1.

So we have invariant 2.

Case 2: - = FINISH(j), for some j, 0 < j < n - I.

First suppose that FINISH(i) is enabled in s.Astate, for some i, 0 < I n - 1. It cannot
be that i = j so j 5 i. Then FINISH(i) is also enabled in s'. As FIMSH(j) is also enabled in
s'. we have. by invariant 1c. that s'.TOKEN(j) used. Similar;v. as FINISH(i) is enabled in

s',we have. by invariant 1c. that s'.TOKEN(i) used. But this implies that the number of

processes for which TOKEN :$ not Jhere is at least two, contradicting Lemma 5.2. Therefore,
this case cannot occur, and we have invariant 1.

For invariant 2. suppose that s.TICKED(i) = true. Then the same argument as in Case 1
shows that, for all i,

s.Ftime(TICK(i)) > .s.Ltimc(LOCAL(i)) + cl - 1.

Case 3: 7r = TICK(j), for sone j, 0 < j <_ n - 1.

First suppose that FINISH(i) is enabled in s.Astate. Then it, is also enabled in s'.Astate.,
so the inductive hypothesis implies that

16

1. (a) s'.TIMER(i) > 0,

(b) s'.Ftime(TICK(i)) + (s'.TIMER(i) - 1)c, > s'.Ltime(FINIStl(i)), and

(c) s'.TOKEN(i) = used.

We first prove that s.TIMER(i) > 0. If not. then it must be that s'.TIMER(i) = 1. and

j i. Then the inductive hypothesis implies that

s'.Ftirne(TICK(i)) > s'.Ltime(FINISII(i)).

But then the definition of time(B) implies that TICK(i) is not enabled in s' (since FINISII(i)

must happen first). This is a contradiction. so we have invariant la.

For the invariant lb, if i = j, then

s.TIMER(i) = s'.TIMER(i) - I

and we see that

s.Ftime(TICK(i)) + (s.TIMER(i)- I)c,

= t + c, + (s'.TJIMER(i) - 1 - l)c,
= t + (s'.TIMER(i) - 1)cl

> t + s'.Ltime(FINISH(i)) - s'.Ftimc(TICK(i))

by inductive hypothesis,

> s'.Ltime(FINISIH(i))

s.Ltime(FINISHt(i)).

Therefore,

s.Ftime(TICK(i)) + (s.TIMER(i) - 1)c, > s.Ltime(FINISH(i)),

and we have invariant lb. If i $ j then invariant lb follows as in Case 1. Invariant ic carries
over as this step does not change token states.

Now suppose that s.TICKED(i) = true. If i = j, then s.Ftime(TICK(i)) = t + c, and

s.Ltimc(LOCAL(i)) < t + 1, so

s.Ftirne(TICK(i)) >_ s.Ltime(LOCAL(i)) + c, - I

as needed for invariant 2. On the other hand, if i 5 j. then ,'.TICNED(i) = trur and the

induction hypothesis on invariant 2 implies that

s'.Ftime(TICK(i)) > s'.Ltime(LOCAL(i)) + c, - 1.

47

Then invariant 2 for s follows as in Case 1.

Case 4: 7r = GRANT(j), for some j, 0 < j < n - 1.

Then s'.TOKEN = available. First suppose that FINISH(i) is enabled in s.Astate, for
some i, 0 < i < n - 1. If i j then FINISH(i) is also enabled in s'.Astate, so by inductive
hypothesis (invariant 1c), s'.TOKEN(i) = used. But this contradicts Lemma 5.2, so i = j.

Then the effects of GRANT(j) imply that s.TIMER(j) > 0, so we have invariant la. Note
that

s'.Ltime(LOCAL(j)) > t

and that

s'.Ftime(TICK(j)) = s.Ftime(TICK(j)).

Then

s.Ftime(TICK(j)) + (s.TIMER(j) - l)cj

= s'.Ftime(TICK(j)) + (s.TIMER(j) - 1)cl

> s'.Ltime(LOCAL(j)) + cl - I + (s.TIMER(j) - 1)cl

by inductive hypothesis,

" t + c, - I + (s.TIMER(j) - 1)cj

= t + c- + (L(m +)/cJ)c

> t + m = s.Ltime(FINISH(j)).

Thus,

s.Ftime(TICK(j)) + (s.TIMER(j) - 1)cl > s.Ltime(FINISH(j))

and we have invariant lb.

Invariant Ic follows from the effects of the GRANT.

Now suppose that s.TICKED(i) = true. Then the effects of (;RANT(j) implies that j 7 i.
Then invariant 2 follows as in Case 3.

Case 5: ir = RECEIVE-TOKEN(j), for some j, 0 < j !< n - 1.

From the inductive hypothesis on invariant lc and Lemma 5.2 it follows that FINISH(i) is
not enabled in s', hence it is not enabled in s. So we have invariant 1.

Invariant 2 follows as in Case 1.

Case 6: 7r = SEND-TOKEN(j), for some j, 0 < j _ n - 1.

If FINISH(i) is enabled in s, then it is also enabled in s', but then from invariant la it follows
that s'.TIMER(j) > 0, so SEND-TOKEN(j) is not enabled in s'. This is a contradiction, so
invariant 1 holds.

Invariant 2 follows as in Case 1.

48

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

